Усилитель на биполярном транзисторе с общим эмиттером

Усилитель на биполярном транзисторе с общим эмиттером

Цель работы: определение рабочего режима по постоянному току и определение коэффициентов передачи усилителя на биполяр­ном транзисторе с общим эмиттером (ОЭ).

Краткие теоретические сведения. Каскады усиления чаще всего выполняют на транзисторах, вклю­ченных с ОЭ, т.к. при этом получают наибольшее усиление сигнала по мощности (по сравнению с двумя другими схемами включения транзистора — с ОБ и ОК). Основными требо­ваниями, предъявляемыми к каскаду, являются макси­мальное усиление, минимальные частот­ные и нелинейные искажения, высокая экономичность, температурная стабильность. При этом наиболее ответственным моментом является выбор рабо­чей точки каскада — электрического состояния усили­тельного элемента по постоянному току до поступления входного сигнала.

Рабочая точка каскада на транзисторе, включенном с ОЭ, определяется четырьмя параметрами: токами IБ р т и IК р т и напряжениями UБЭ р.т и UКЭ р.т. В активном режиме рабочую точку транзистора уста­навливают подачей прямого напряжения на эмиттерный переход и обратного на коллекторный. Упрощенная схема транзисторного каскада на транзис­торе р-n-р-типа показана на рис. 3.1а. В схеме на транзисто­ре n-р-n-типа полярность источника питания будет проти­воположной. Для коллекторной цепи каскада справедливо соотношение UКЭ = ЕК — IКRК, называемое уравнением линии нагрузки. Этому уравнению соответствует линия, пересекающая координатные оси IК и UКЭ (рис. 3.2а) в точках ЕК и ЕК /RК и называемая линией нагрузки. Для предотвращения необратимого пробоя транзистора линию нагрузки строят, исходя из условий: ; .

При неизменных напряжении питания ЕК и сопротивлении резистора RК рабочая точка транзистора в любой момент усилительного процесса находится на линии нагрузки. На линии выделяют рабочий участок, в пре­делах которого рабочая точка смещается под действием входного сигнала между точками Б и В, близкими соот­ветственно к областям насыщения и отсечки. Предельные изменения входного тока базы должны быть такими, чтобы рабочая точка не выходила за пределы отрезка БВ. Для работы транзистора в активном режиме (класс А) рабочую точку выбирают посередине рабочего участка — точка А(р.т.). Положение точки А определяется тремя параметрами: IБ р т, IК р т и UКЭ р.т, четвертый параметр UБЭ р.т получают переносом рабочей точки на входную характеристику (рис. 3.2б). Начальное положение рабочей точки обеспечивается делителем напряжения, состоящим из резисторов R1 и R2 (рис. 3.1б). Обычно ток базового делителя выбирают из условия:

Рис.3.1. Упрощенные схемы транзисторных каскадов

Рис.3.2. Определение положения рабочей точки транзистора

а сопротивления его резисторов рассчитывают из уравнений:

;

.

Применение базового делителя способствует температурной стабилизации рабочей точки, но снижает входное сопротивление каскада и приводит к излишней нагрузке на источник входного сигнала и потере части энергии в базовом делителе.

Лучший результат температурной стабилизации дает эмиттерная стабилизация ра­бочей точки, достигаемая за счет включения в цепь эмиттера резистора RЭ (рис. 3.3), который формирует отрицательную обратную связь по постоянному току. Сопротивление резистора RЭ рассчитывается по формуле

.

Рассмотрим процесс эмиттерной стабилизации рабо­чей точки. При росте температуры увеличиваются не­управляемый ток коллектора IКБ0, напряжение UБЭ р.т, а также токи базы IБ р т, и коллектора IК р т и, соответственно, растет падение напряжения на резисторе RЭ в эмиттер­ной цепи. В результате снижается напряжение смещения на эмиттерном переходе, определяемое из уравнения:

,

а следовательно, уменьшаются токи эмиттера и коллектора, и рабочая точка возвращается в исходное положение. Для ослабления обратной связи по переменному току (при наличии входного переменного сигнала) параллельно резистору RЭ включают конденсатор СЭ. Его емкость выбирают таким образом, чтобы для всех частот усиливаемого напряжения сопротивление конденсатора было много меньше RЭ.

Наиболее распространенная схема усилительного каскада на биполярном транзисторе с общим эмиттером представлена на рис. 3.3. Входное усиливаемое переменное напряжение подается на вход усилителя через разделительный конденсатор С1. Конденсатор С1 препятствует передаче на вход усилителя постоянной составляющей напряжения входного сигнала, которая может вызвать нарушение режима работы транзистора по постоянному току. Усиленное переменное напряжение, снимаемое с коллектора транзистора, подводится к внешней нагрузке с сопротивлением RН через разделительный конденсатор С2. Этот конденсатор служит для разделения выходной коллекторной цепи и внешней нагрузки по постоянному току.

При повышении частоты сигнала необходимо учиты­вать влияние входной и выходной емкостей транзистора, шунтирующих входное и выходное сопротивления каска­да, что проявляется в уменьшении полезного тока, посту­пающего на его вход и в нагрузку. Для оценки влияния частоты сигнала на коэффициент усиления напряжения используют амплитудно-частотную характеристику (АЧХ) усилителя.Полосой пропускания усилителя называют интервал частот, в пределах которого коэффициент усиления снижается не более чем на 3 дБ (до уровня 0,707) по отношению к его максимальному значению.

Читайте также:  Бустилат и пва в чем разница

Рис.3.3. Схема усилительного каскада на биполярном транзисторе с общим эмиттером

Для определения основных динамических параметров усилительного каскада в режиме усиления переменного тока в области средних частот пользуются его эквивалентной схемой для переменных составляющих токов и напряжений. Сопротивления конденсаторов СЭ , С1 и С2 в области средних частот очень малы и ими можно пренебречь. Воспользовавшись схемой замещения транзистора в h-параметрах и, считая коэффициент обратной связи по напряжению h12 равным нулю, получим эквивалентную схему усилительного каскада (рис.3.4).

С помощью эквивалентной схемы определим основные параметры усилителя.

Рис.3.4. Эквивалентная схема усилительного каскада на биполярном транзисторе с общим эмиттером

Входное сопротивление каскада RВХ определяется параллельным соединением резисторов R1, R2 и h11. Однако обычно сопротивления резисторов R1 и R2 значительно больше h11, поэтому и, следовательно, .

Выходное сопротивление усилительного каскада определяется в соответствии со схемой выражением

.

Следовательно, с учетом последнего соотношения, выходной ток каскада iВЫХ может быть определен следующим образом:

.

Коэффициент передачи тока КI определяется в результате из выражения

.

Для коэффициента передачи напряжения КU получаем следующее соотношение:

.

Рис.3.5. Схема исследуемой цепи

Рабочее задание

1.Подготовьте к работе исследуемую цепь. Для этого:

а) познакомьтесь со схемой исследуемой цепи (рис.3.5);

б) при отключенном макете установите напряжение источника ЕК равным 12 В, не изменяя значения установленного напряжения выключите источник;

в) соберите исследуемую цепь в соответствии с рис. 3.5, особое внимание обратите на полярность включения источника напряжения ЕК;

г) включите напряжение питания ЕК.

2. Зафиксируйте рабочий ре­жим транзистора по постоянному току, для чего после включения постоянного источника питания Е измерьте постоянные составляющие потенциалов в точках Б (база), К (коллектор) и Э (эмиттер). Рассчитайте постоянные составляющие токов IБ, IК и IЭ.

3. Подайте от генератора на вход усилителя переменное напря­жение так, чтобы между точками а и в было напряжение u1, ве­личина и частота которого указаны на макете. Напряжение u1, при­нимается за входное напряжение усилителя.

4. Произведите измерения необходимые для определения коэффи­циентов передач напряжения и , а также входного сопротивления . Рассчитайте численные значения этих величин по данным измерений. Токи i1 и i2 определите косвенно по данным измерений напряжений на резисторах R3 и RК .

5. Снимите АЧХ усилителя КU=K(f). Для этого, поддерживая неизменным входное напряжение u1, и меняя его частоту в возможных пределах генератора, замерьте соответству­ющие значения выходного напряжения u2 . Измерения начните с час­тоты f = 1кГц. Постройте по данным измерений график АЧХ .

6. Пользуясь схемой замещения усилителя, выраженной через h — параметры (примите h12 = 0), получите формулы для расчета КI , КU и RВХ. Сопротивление резистора R3 не входит в расчет, т.к. входное напряжение принимается между точками а и в.

7. Рассчитайте по формулам п.5 численные значения КI , КU и RВХ. Для параметров транзистора примите следующие значения:

Контрольные вопросы

1.Расскажите об устройстве, принципах работы и основных параметрах биполярных транзисторов.

2.По какой схеме включен транзистор в исследуемом усилителе.

3.Какую роль играют в исследуемом усилителе резисторы и конденсаторы.

4.Как строится и для чего используется эквивалентная схема замещения усилителя в h-параметрах.

Лабораторная работа № 4

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Типичная схема усилительного каскада на транзисторе с ОЭ показана на рис.3.4,а.

Входное усиливаемое переменное напряжение Uвх подводится ко входу усилителя через разделительный конденсатор С1. Конденсатор С1 препятствует передаче постоянной составляющей напряжения входного сигнала на вход усилителя, которая может вызвать нарушение режима работы по постоянному току транзистора VT. Усиленное переменное напряжение, выделяемое на коллекторе транзистора VT, подводится к внешней нагрузке с сопротивлением Rн через разделительный конденсатор С2. Этот конденсатор служит для разделения выходной коллекторной цепи от внешней нагрузки по постоянной составляющей коллекторного тока Iкр

Читайте также:  Построить баню недорого цены

Значения Iкр и других постоянных составляющих тока и напряжения в цепях транзистора зависят от режима его работы ( начального положения рабочей точки ).

Рабочей точкой транзистора называют точку пересечения динамической характеристики (нагрузочной прямой) с одной из статических вольт-амперных характеристик. Режим работы транзистора определяется начальным положением рабочей точки (при отсутствии входного переменного сигнала). Это положение определяется на характеристиках совокупностью постоянных составляющих токов и напряжений в выходной IКр, UКЭр и входной IБр, UБЭр цепях (рис. 3.4, б, в).

При работе транзистора в активном (усилительном) режиме (класса А) рабочая точка должна находиться примерно посередине отрезка АВ нагрузочной прямой. Предельные изменения входного тока базы должны быть такими, чтобы рабочая точка не выходила за пределы отрезка АВ.

Начальное положение рабочей точки обеспечивается делителем напряжения, состоящим из резисторов R1 и R2, значения сопротивлений которых определяются из соотношений:

где Iд = (2. 5)IБр — ток в цепи делителя.

При обеспечении режима работы транзистора необходимо осуществить температурную стабилизацию положения рабочей точки (уменьшить влияние температуры на начальное положение рабочей точки). C этой целью в эмиттерную цепь введен резистор Rэ, на котором создается напряжение ООС по постоянному току URэ.

Для устранения ООС по переменному току (при наличии входного переменного сигнала) резистор Rэ шунтируют конденсатором Сэ, сопротивление которого на частоте усиливаемого сигнала должно быть незначительным.

17.Многокаскадный усилитель

В большинстве случаев одиночные каскады не обеспечивают необходимое усиление и заданные параметры усилителей. Поэтому усилители, которые применяют в аппаратуре связи и измерительной технике, многокаскадные. При анализе и расчете многокаскадного усилителя необходимо определить общий коэффициент усиления усилителя, искажения, вносимые им, распределять их по каскадам, определить требование к источникам, решить вопросы введения обратных связей и т.д.

2. КОЭФФИЦИЕНТ УСИЛЕНИЯ МНОГОКАСКАДНОГО УСИЛИТЕЛЯ

Коэффициент усиления усилителя можно определить, исходя из структурной схемы (рис.1):

где K1,…, Kn – коэффициенты усиления каскадов, 1,…, n – фазовые сдвиги, вносимые каждым усилительным каскадом.

Таким образом, для многокаскадного усилителя общий коэффициент усиления равен произведению коэффициентов усиления каждого каскада. Суммарный фазовый сдвиг, вносимый усилителем, равен сумме фазовых сдвигов каждого каскада. Сквозной коэффициент усиления

где kвх=Zвх/(Zг + Zвх) – коэффициент передачи входной цепи. Если коэффициент усиления отдельных каскадов выразить в логарифмических единицах, то общий коэффициент усиления многокаскадного усилителя будет равен сумме коэффициентов

В аппаратуре связи для компенсации потери мощности на отдельных участках (затухания) необходимо, чтобы усилитель работал на согласованную нагрузку, т.е. его входное сопротивление должно быть равно сопротивлению источника (выходного сопротивления предыдущего тракта аппаратуры или линии), а выходное сопротивление должно равняться сопротивлению нагрузки. Для согласования усилителей по входу и выходу используют уси­лители с обратной связью и согласующие трансформаторы. Отклонение от согласования в рабочей полосе частот оценивается коэф­фициентом отражения

При использовании согласующих трансформаторов пересчитанное сопротивление нагрузки в первичную обмотку R1=Rнn 2 , где п— коэффициент трансформатора, т. е. отношение витков первичной обмотки к вторичной (рис. 2,а).

или R’1 = U1/I1=Rнn 2 =Rг. Отсюда с учетом потерь в трансформаторе коэффициент трансформации:

где nt – КПД трансформатора.

Применение входного и выходного трансформаторов позволяет достаточно просто осуществить переход с симметричной схемы на несимметричную (рис.2, б).

Классы усилительных каскадов

Рабочая точка покоя определяет режим работы каскада или класс усиления. В зависимости от положения рабочей точки различают три класса усиления:

класс А – рабочая точка лежит в середине линейного участка передаточной характеристики. Для него характерны минимальные нелинейные и непрерывные проникновения тока через транзистор, вследствие чего КПД класса «А» составляет 20 – 30%. Он применяется в предв. каскадах усиления, т.е там где высоки требования к нелинейным искажениям и мала мощность.

класс В – точка покоя лежит в начале линейного участка. Он обладает высоким КПД 60 – 70%, вследствие отсутствия постоянной составляющей, т.е при отсутствии входного сигнала каскад не потребляет энергии. Этот класс каскада применяется оконч. выходных каскадах усилителей мощности.

класс С – точка покоя лежит ниже линейного участка, КПД ещё выше – 80%

Применяется в оконеч. каскадах большой мощности на избирательную нагрузку.

Это обычно выходные каскады много каскадных усилителей. Они предназначены для увеличения нагрузочной способности и создания нагрузки сигнала заданной мощности. Такие усилители работают в режиме большого сигнала. Их основными параметрами являются:

Читайте также:  Реставрация старого буфета своими руками мастер класс

Величины выходной мощности Рвых=

Классификация усилителей мощности.

В зависимости от РТ класса А, АВ, В, С, Д.

В зависимости от связи между каскадами.

а) с трансформаторной связью

б) с без трансформаторной связью

В зависимости от схемы технического решения

Рассматриваемый усилитель (рис. 101) предназна­чен для усиления гармонических сигналов (сигналов сину­соидальной формы) в диапазоне низких частот. Название такой схемы объясняется тем, что эмиттер здесь является общим для входной и выходной цепей. Схема имеет наи­большее распространение, так как она обеспечивает наи­большее усиление мощности сигнала.

Рис. 101. Схема электронного усилителя на биполярном транзисторе с общим эмиттером

Приведенные на рис. 101 элементы имеют сле­дующее назначение: транзистор р-п-р — усилительный элемент; +Ек и -Ек — зажимы источника питания схемы; R1, R2 — резисторы делителя напряжения, обеспечиваю­щего подачу напряжения питания базы для установки нужного режима работы усилительного элемента (транзи­стора); RK резистор коллекторной нагрузки; Rэ, Сэ — эле­менты схемы температурной стабилизации режима рабо­ты транзистора; С1 и С2 — конденсаторы, служащие для разделения постоянных и переменных токов в схеме.

Для анализа работы усилителя используют вход­ную характеристику транзистора

Iб = f(Uбэ) (рис. 102, а) и семейство выходных характеристик IK =f(Uкэ) (рис. 102, б). На рисунке Uбэ напряжение смещения базы, т.е. напря­жение питания базы (при отсутствии сигнала); Uбm = Uвх m — амплитуда синусоидального напряжения сигнала, подавае­мого на базу; Iб0— ток базы при отсутствии сигнала (ток по­коя); Iбm — амплитуда переменной составляющей тока базы; Uкэ — напряжение питания коллектора (напряжение на кол­лекторе при отсутствии сигнала); Uкm- амплитуда перемен­ной составляющей напряжения на коллекторе; ток кол­лектора при отсутствии сигнала (ток покоя коллектора).

Рис. 102. Вольт-амперные характеристики усилителя: входная (а);

При выборе точки покоя на прямолинейном участ­ке проходной характеристики, рис. 102 в и при условии, что напряжения и токи не выходят за пределы линейного участка, можно получить переменную составляющую кол­лекторного тока такой же формы, как напряжение сигнала, подаваемого на базу, т.е. получить неискаженное усиление сигнала. Усиление здесь достигается за счет того, что ток коллектора, образуемый от энергии источника питания, во много раз больше, чем ток базы, а напряжение сигнала на коллекторной нагрузке, определяемое произведением тока на сопротивление нагрузки, также во много раз больше напряжения сигнала, подаваемого на базу.

Основные характеристики усилителя: Амплитудно-частотная характеристика (рис. 103 а) представляет собой зависимость коэффициента усиления Ки от частоты сигнала f

Рис. 103. Амплитудно-частотная (а) и амплитудная (б) характеристики усилителя

Коэффициент усиления уменьшается на нижних частотах вследствие увеличения реактивного сопротивле­ния разделительных конденсаторов Хс = 1 / ωС, включен­ных последовательно в цепях прохождения сигналов.

В результате большая часть напряжения падает на этих конденсаторах и выходное напряжение уменьшается.

Уменьшение коэффициента усиления на верхних частотах объясняется уменьшением реактивного сопро­тивления паразитной емкости, шунтирующей (включенной параллельно) нагрузочное сопротивление на выходе уси­лителя. Эта паразитная емкость обусловлена емкостью монтажных проводов, измерительных приборов или уси­лительных элементов последующих каскадов усилителя.

Уменьшение коэффициента усиления на нижних Кн и верхних Кв частотах по сравнению с коэффициентом усиления на средних частотах К оценивают коэффициен­тами частотных искажений

По частотной характеристике можно определить ширину полосы частот пропускания усилителя, т.е. полосу частот, в пределах которой коэффициент усиления умень­шается не более чем в √2 раз.

Полоса частот пропускания усилителя определяет качество его работы, так как для неискаженного усиления сигналов усилитель должен обеспечивать равномерное усиление всех частотных составляющих сигнала. Так, на­пример, звуковая аппаратура высокого класса имеет поло­су пропускания до 20 кГц, а аппаратура радиосвязи горно­спасателей ограничивается полосой пропускания 300-3000 Гц.

Амплитудная (динамическая) характеристика (рис. 103 б) усилителя представляет собой зависимости вы­ходного напряжения от входного

Сростом входного напряжения Uвх выходное на­пряжение Uвых сначала увеличивается пропорционально, а с некоторого значения Uвx рост Uвых замедляется и прекра­щается. Это объясняется тем, что усиливаемый сигнал начинает выходить за пределы линейного участка проходной характеристики транзистора (рис. 102 в). Действительно, каждый транзистор обладает своим предельно максималь­ным током коллектора, который не возрастает при увели­чении напряжения на базе.

По амплитудной характеристике усилителя можно судить о диапазоне входных напряжений, которые он ох­ватывает.

Ссылка на основную публикацию
Умывальник в общественном туалете
Сантехника для коммерческих объектов – это сантехническое оборудование для оснащения санитарных зон в общественных помещениях таких как: аэропорты, вокзалы, гостиницы,...
Укладка геотекстиля технология под тротуарную плитку
Сегодня использование тротуарной плитки для различных тем оформления дизайна улиц, парков, придомовых участков практически вытеснило другие технологии оформления пешеходных тротуаров.Производители...
Укладка гранитной брусчатки видео
Технология укладки гранитной брусчатки хоть и схожа с технологией укладки обычной тротуарной плитки, но все же имеет свои особенности. Известно,...
Умывальник кувшинка над стиральной машиной
Подбираете компактную сантехнику для своей довольно скромной ванной комнаты, чтобы поместить все необходимое? Согласитесь, что место стиралки – в ванной...
Adblock detector