Ток электродинамической стойкости трансформатора тока

Ток электродинамической стойкости трансформатора тока

Трансформаторы тока (ТТ) устанавливают во всех цепях (цепи генераторов, трансформаторов, линий и пр.). Состав измерительных приборы, подключаемых к ТТ зависит от конкретной цепи и выбирается согласно рекомендациям предыдущего раздела 13. В первую очередь это будут амперметры и приборы, для работы которых необходима информация о токе и напряжении: ваттметры, варметры, счетчики активной и реактивной энергии.

ТТ являются однофазными аппаратами и могут быть установлены в одну, две или три фазы, как это показано на рис. 14.1. Обычно в цепях 6 – 10 кВ ТТ устанавливают в двух фазах по схеме неполной звезды, при напряжении 35 кВ и выше – в трех фазах, по схеме полной звезды.

Рис. 14.1 Схемы соединения измерительных трансформаторов тока и приборов (показаны только амперметры): а – включение в одну фазу; б – включение в неполную звезду; в — включение в полную звезду. Здесь l-расстояние от ТТ до приборов, lрасч –расчетное расстояние учитывающее l и схему соединения соединения ТТ.

Ниже в таблице приводится набор параметров, которыми характеризуются трансформаторы тока

Наименование параметра Обозначение параметра
Номинальное напряжение Uном , кВ
Номинальный первичный ток I1ном,, А
Номинальный вторичный ток I2ном = 1 А; 5 А
Ток динамической стойкости iдин , кА
Ток термической стойкости Iтс , кА
Время термической стойкости tтс , с
Вторичное номинальное сопротивление z2ном, Ом

Выбор трансформаторов тока при проектировании энергоустановок заключается в выборе типа трансформатора, проверке на электродинамическую и термическую стойкость, определении ожидаемой вторичной нагрузки Z2 и сопоставлении ее с номинальной в заданном классе точности Z2hом.

Условия выбора трансформаторов тока (ТТ):

1. В нагрузочном режиме трансформатор тока должен неограниченно долго выдерживать воздействие первичного номинального тока I1ном и номинального напряжения Uном, т.е.

где Iраб.форс – рабочий форсированный ток в цепи ТТ (зависит от того, в цепи какого присоединения стоит ТТ), Uуст – напряжение установки, где применён ТТ.

Вторичный номинальный ток I2ном может выбран 1А или 5А, в зависимости от конкретного ТТ и дополнительных условий.

2. Проверка трансформатора тока на электродинамическую стойкость.

Электродинамическая стойкости ТТ будет обеспечена, если будет выполнено условие:

где iдин амплитуда предельного сквозного тока (тока динамической стойкости), который ТТ выдерживает по условию механической прочности, а iу (3) –значениеударного тока при трёхфазном КЗ.

3. Проверка трансформатора тока на термическую стойкость.

Термическая стойкость ТТ будет обеспечена, если будет выполнено условие:

Iтс 2 tтс ≥Bк, где Iтс — номинальный ток термической стойкости ТТ, tтс — номинальное время термической стойкости; Вк — расчетный тепловой импульс в цепи ТТ (методика расчета Вк рассматривалась в разделе 9).

4. Проверка трансформатора тока по работе в заданном классе точности.

Трансформаторы тока характеризуются токовой погрешностью fi=(I2KI1)100/I1 (в процентах), где I1 и I2 – токи первичной и вторичной обмоток ТТ, а K=I1ном/I2ном — коэффициент трансформации ТТ.

В зависимости от токовой погрешности измерительные трансформаторы тока разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Наименование класса точности соответствует предельной токовой погрешности трансформатора тока при первичном токе, равном 1—1,2 номинального. Для лабораторных измерений предназначены трансформаторы тока класса точности 0,2, для присоединений счетчиков электроэнергии — класса 0,5, для присоединения щитовых измерительных приборов — классов 1 и 3. Класс 10 применяется для присоединения устройств релейной защиты, но этот класс должен быть обеспечен при больших токах КЗ, а не при токах нагрузки.

Читайте также:  Как заблокировать покупки в ростелеком

При одном и том же первичном токе I1 токовая погрешность ТТ зависит от сопротивления вторичной нагрузки Z2, чем оно больше тем больше погрешность. Чтобы ТТ работал в заданном классе точности необходимо выполнить условие:

где Z2hом — номинальная нагрузка трансформатора тока при работе в заданном классе точности (выраженная в Омах, дается в каталогах на ТТ).

Рассмотрим подробнее, как рассчитывается нагрузка Z2. Индуктивное сопротивление токовых цепей невелико, поэтому можно принять Z2 ≈r2. Вторичная нагрузка состоит из сопротивления приборов (rприб), соединительных проводов (rпр) и переходного сопротивления контактов в местах подключения приборов (rк):

Сопротивление приборов rприб=Sприб/I 2 2ном, где Sприб — мощность, потребляемая приборами в наиболее нагруженной фазе.

Сопротивление контактов rк принимают равным 0,05 Ом при двух-трех и 0,1 Ом — при большем числе приборов.

Таким образом, при заданном составе приборов, удовлетворить условие (14.1) можно только за счет площади сечения соединительных проводов rпр.

Зная Z2hом, определяем допустимое сопротивление rпр= Z2hом – rприб-rк и площадь сечения провода q=ρlрасч/rпр, где ρ — удельное сопротивление материала провода; lрасч— расчетная длина, зависящая от схемы соединения трансформаторов тока и расстояния l от трансформаторов тока до приборов: при включении в неполную звезду lрасч = √З l (рис.14.1б),при включении в звезду lрасч= l (рис.14.1в); при включении в одну фазу lрасч=2l (рис.14.1а).

При реальном проектировании расстояния l известно, но при учебном проектировании это расстояние может быть не задано и тогда для разных присоединений принимается приблизительно следующая длина соединительных проводов l (в метрах):

Все цепи ГРУ 6—10 кВ, кроме линий к потребителям . 40—60

Линии 6—10 кВ к потребителям. . 4—6

Цепи генераторного напряжения блочных станций 20—40

Все цепи РУ 35 кВ . . 60—75

Все цепи РУ 110 кВ. 75—100

Все цепи РУ 220 кВ. 100—150

Все цепи РУ 330—500 кВ. 150—175

Для подстанций указанные длины снижают на 15—20%.

В качестве соединительных проводников применяют контрольные четырехжильные кабели (три фазных жилы и жила обратного проводника). Их сопротивление зависит от материала и сечения жил. Кабели с медными жилами (удельное сопротивление ρ=0,0175 Ом мм 2 /м) применяют во вторичных цепях мощных электростанций с высшим напряжением 220 кВ и выше. Во вторичных цепях остальных электроустановок используют кабели с алюминиевыми жилами (удельное сопротивление ρ=0,028 Ом • мм 2 /м).

На основании вышеизложенного минимальное сечение жилы контрольного кабеля можно определить согласно соотношению:

.

По условию механической прочности сечение медных жил должно быть не менее 1,5 мм 2 , а алюминиевых жил — не менее 2,5 мм 2 . Если в число подключаемых измерительных приборов входят счетчики, предназначенные для денежных расчетов, то минимальные сечения жил увеличивают до 2,5 мм 2 для медных жил и до 4 мм 2 для алюминиевых жил.

Читайте также:  Как разводить спирт для незамерзайки

Технический портал компании

Категории

Стойкость трансформаторов тока к токам короткого замыкания определяется следующими параметрами:

  • током термической стойкости Iт, кА или кратностью тока термической стойкости Кт
  • током электродинамической стойкости Iд, кА или кратностью тока электродинамической стойкости, Кд
  • временем протекания тока короткого замыкания, tк (1 или 3 с)

Ток термической стойкости

Ток термической стойкости Iт – наибольшее действующее значение тока короткого замыкания за промежуток времени, которое трансформатор тока выдерживает в течение этого промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах короткого замыкания, и без повреждений, препятствующих его дальнейшей исправной работе.

Кратность тока термической стойкости Kт – отношение тока термической стойкости к действующему значению номинального первичного тока Iном.

Формула пересчета кратности тока термической стойкости через ток термической стойкости и номинальный первичный ток трансформатора?

Формулы пересчета трехсекундного тока термической стойкости через ток односекундной термической стойкости и обратно:

Допустимый односекундный ток термической стойкости трансформаторов ООО «НТЗ «Волхов» в зависимости от номинального первичного тока приведен ниже

Номинальный первичный ток, А Односекундный ток термической стойкости, кА
5 0,5 – 2
10 1 – 5
15 1,6 – 5
20 2 – 10
30 5 – 12,5
40 5 – 16
50 5 – 25
75, 80 10 – 31,5
100 10 – 50
150 16 – 50
200, 250 20 – 50
300 31,5 – 50
400 – 4000 40 – 50

Максимально допустимый ток термической стойкости может быть ограничен особенностями конструкции трансформатора, подробная информация указана в технических характеристиках на конкретное типоисполнение.

Ток электродинамической стойкости

Ток электродинамической стойкости Iд – наибольшее амплитудное значение тока короткого замыкания за все время его протекания, которое трансформатор тока выдерживает без повреждений, препятствующих его дальнейшей исправной работе.

Кратность тока электродинамической стойкости Kд – отношение тока электродинамической стойкости к амплитудному значению номинального первичного тока

?Формула пересчета кратности тока электродинамической стойкости через ток электродинамической стойкости и номинальный первичный ток трансформатора

Между значениями Iд и Iт должно соблюдаться соотношение

[ I_дgeq1,8cdotsqrt 2cdot I_т ]

Соответствие токов КЗ трансформаторов

Таблица соответствия токов термической стойкости, токов электродинамической стойкости для изделий ООО «НТЗ «Волхов» приведена ниже

Односекунд­ный ток тер­миче­ской стой­кости Iт(1с), кА Трехсекунд­ный ток тер­миче­ской стой­кости Iт(3с), кА Ток электро­ди­на­миче­ской стой­кости Iд, кА
0,5 0,31 1,3
1 0,62 2,5
1,6 1 4,1
2 1,25 5,1
5 3,15 12,7
10 6,25 25,5
12,5 8 31,8
16 10 40,7
20 12,5 50,9
25 16 63,6
31,5 20 80,2
40 25 101,8
50 31,5 127,3

Особенности расчета трансформаторов с повышенным током термической стойкости

Увеличение значения односекундного тока термической стойкости (особенно на трансформаторах тока со значениями номинального первичного тока от 5 до 200 А) приводит к увеличению сечения первичной обмотки, что ведет за собой увеличение габаритных размеров трансформаторов или ограничение таких параметров, как:

  • количество вторичных обмоток
  • номинальная предельная кратность вторичных обмоток для защиты
  • номинальная мощность вторичных обмоток для защиты

Трансформаторы тока, предназначенные для питания измерительных приборов, выбираются:

– по номинальному длительному току – Iраб.утяжI1 ном , причём, номинальный ток должен быть как можно ближе к рабочему току установки, так как недогрузка первичной обмотки приводит к увеличению погрешностей;

Читайте также:  Как просушить погреб в гараже от конденсата

– по конструкции и классу точности;

– по электродинамической стойкости;

– по термической стойкости.

Выбор класса точности определяет назначение трансформатора тока. В соответствии с ПУЭ:

а) трансформаторы тока для включения электроизмерительных приборов должны иметь класс точности не ниже 3;

б) обмотки трансформаторов тока для присоединения счётчиков, по которым ведутся денежные расчёты, должны иметь класс точности 0,5;

в) для технического учёта допускается применение трансформаторов тока класса точности 1,0.

Для обеспечения выбранного класса точности необходимо, чтобы действительная нагрузка вторичной цепи Z2 не превосходила нормированной для данного класса точности нагрузки Z2ном, Ом, т.е.Z2Z2ном.

Рассмотрим подробнее выбор трансформаторов тока по вторичной нагрузке.

Индуктивное сопротивление токовых цепей невелико, поэтому

Вторичная нагрузка R2 состоит из сопротивления приборов Rприб , соединительных проводов Rпр и переходного сопротивления контактов Rк:

Сопротивление приборов определяется по выражению

,

где – мощность, потребляемая приборами, подсоединённымико вторичной обмотке трансформатора тока;

– квадрат вторичного номинального тока прибора (обычно Iном для ТТ до 110 кВ равен 5А, для ТТ 220 кВ и выше Iном = 1 А).

Сопротивление контактов принимается Rк = 0,05 Ом при двух-трёх приборах и Rк = 0,1 Ом при большем числе приборов. Сопротивление соединительных проводов зависит от их длины, сечения и материала проводника (медь или алюминий).

Чтобы трансформатор тока работал в заданном классе точности, необходимо выдержать условие

Определив Rпр можно вычислить сечение соединительных проводов:

,

где – удельное сопротивление материала провода. Провода с медными жилами ( = 0,0175) применяются во вторичных целях основного и вспомогательного оборудования мощных электростанций с агрегатами 100 мВт и более, а также на подстанциях с высшим напряжением 220 кВ и выше. В остальных случаях – во вторичных цепях –применяются провода с алюминиевыми жилами ( = 0,0283).

Расчётная длина провода в один конец зависит от распределительного устройства (110 или 35 кВ) и принимается:

для РУ – 110 кВ – lрасч = 75 ÷ 100 м;
для РУ – 110 кВ – lрасч = 60 ÷ 75 м;
для линий 6 – 10 кВ – lрасч = 4 ÷ 6 м;
цепи генераторов – lрасч = 20 ÷ 40 м.

По условию прочности сечение соединительных проводов не должно быть меньше 2,5 мм 2 для медных проводов и 4 мм 2 для алюминиевых проводов (требование ПУЭ).

Электродинамическая стойкость в каталоге задана в одной из двух форм:

а) задан номинальный ток электродинамической стойкости iдин (максимальное значение полного тока);

б) задана кратность номинального тока электродинамической стойкости в виде

, откуда

,

где – кратность динамической стойкости (каталожные данные);

– первичный номинальный ток выбранного трансформатора тока.

Условие проверки по электродинамической стойкости:

.

Термическая стойкость в каталогах задана также в одной из двух форм:

а) задана кратность номинального тока термической стойкости в виде

и допустимое время протекания ;

б) заданы номинальный ток термической стойкости и допустимое время его протекания .

Условие проверки по термической стойкости:

.

Номинальные данные трансформаторов тока приведены в справочной литературе.

Ссылка на основную публикацию
Adblock detector