Термические методы переработки нефти

Термические методы переработки нефти

К вторичным процессам переработки нефтяного сырья относятся процессы, при которых изменяется структура входящих в состав нефти углеводородов, с целью получения различных нефтепродуктов и сырья для нефтехимической промышленности. Вторичные процессы в свою очередь подразделяются на термические (протекающие при повышенных температурах) и термокаталитические (протекающие при повышенных температурах и в присутствии катализаторов).

Термические процессы – термический крекинг, пиролиз, коксование. К термокаталитическим процессам относятся: каталитический крекинг, риформинг, алкилирование, изомеризация, полимеризация, гидрокрекинг, гидроочистка. Эти процессы протекают по различным механизмам.

Термические процессы углеводородов протекают при повышенных температурах с разрывом С–С-связей по цепному свободно-радикальному механизму.

Кроме газообразных и жидких веществ при термических процессах переработки нефтепродуктов получаются твердые вещества – углерод (сажа) или кокс. Образование сажи объясняется распадом углеводородов до свободного углерода.

Кокс получается при глубокой конденсации ароматических соединений, идущей с отщеплением водорода.

Таким образом, при переходе от термического крекинга (470-540 о С) к пиролизу (700-1000 о С) изменяются продукты распада. При пиролизе протекают реакции с более высокой энергией активации, что приводит к образованию более низкомолекулярных продуктов (этилена, пропилена) и даже протекает распад с образованием СН4 и С2Н2. Однако, могут образоваться и более высокомолекулярные ароматические структуры.

Поднимать температуру пиролиза выше 900 о С нецелесообразно, если целью является синтез низкомолекулярных олефинов и диенов, а также ценных побочных продуктов пиролиза – ароматических углеводородов.

Следует заметить, что состав конечных продуктов термических процессов зависит также от природы исходного сырья, давления, времени контакта.

Термический крекинг тяжелых остатков переработки нефти проводится с целью получения автомобильного бензина (в настоящее время этот процесс устарел); высокоароматизированного газойля – сырья для производства сажи; крекинг – остатков – для производства кокса; маловязкого топочного мазута.

Сырьем термического крекинга (крекинг — распад, разложение) обычно служат – тяжелые остатки переработки нефти – полугудрон и гудрон; а для получения бензина используют относительно легкие нефтяные фракции (200-350 о С).

Условия протекания процесса. Процесс термического крекинга проводят при 470-540 о С и давлении 2-7 МПа.

В результате получают: углеводородный газ (содержит непредельные углеводороды и является сырьем для нефтехимического синтеза); крекинг-бензин (характеризуется низким октановым числом и низкой стабильностью); керосино — газойлевая фракция (200-350 о С) (ценный компонент флотского мазута и после гидроочистки – компонент дизельного топлива); термогазойль (для производства технического углерода); крекинг-остаток (фракция, кипящая выше 350 о С – котельное топливо).

Назначение. При работе в режиме термического крекин­га — получение дополнительных количества светлых нефте­продуктов термическим разложением остатков от перегонки нефти, при работе в режиме висбрекинга — улучшение каче­ства котельного топлива (снижение вязкости).

Сырье и продукция. Сырьем установок являются остатки первичной перегонки нефти — мазут выше 350°С и гудрон выше 500°С.

Продукция:

• газ, содержащий непредельные и предельные углеводо­роды и сероводород; после очистки от сероводорода может быть использован как сырье газофракционирующих установок или в качестве топливного газа;

• бензин — характеристика: октановое число 66-72 (мо­торный метод), содержание серы при переработке ос­татков из сернистых нефтей — 0.5-1,2 %: в бензине тер­мического крекинга содержится до 25% непредельных углеводородов (алкенов и алкадиенов), поэтому он об­ладает низкой химической стабильностью. Может быть использован в качестве сырья риформингаили компо­нента товарного бензина после процесса гидрооблаго­раживания. При использовании непосредственно в ка­честве компонента товарного бензина к бензину тер­мического крекинга добавляют ингибиторы, препятст­вующие окислению;

• керосино-газойлевая фракция — ценный компонент флотского мазута; после гидроочистки может приме­няться как компонент дизельных топлив;

• крекинг-остаток — используется как котельное топли­во, имеет более высокую теплоту сгорания, более низ­кую температуру застывания и вязкость, чем прямогонный мазут.

Описание технологической схемы.Схема установки термического крекинга зависит от назначения процесса и от используе­мого сырья. Для получения котельного топлива с более низкой вязкостью применяется процесс с нагревом в печи до необходимой температуры и дальнейшим продолжением реакций термокрекинга, начавшихся в печи, в сокинг-камере. Время пребывания сырья в сокинг-камере составляет 15-30 мин.

На рисунке приводится схема установки висбрекинга с сокинг-камерой. Сырье подают через теплообменник Т-1 в печь П-1. Для турбулизации потока в сырье перед печью по­дается химически очищенная вода. Начавшиеся в печи реак­ции термокрекинга продолжаются в сокинг-камере П-2, от­куда продукты реакции поступают на разделение во фракционатор К-1. Легкие продукты термокрекинга и пары воды из верхней части фракционатораконденсируются и охлажда­ются в воздушном Х-1 и водяном Х-2 конденсаторах-холо­дильниках и разделяются в сепараторе С-1 на газ, бензин икислую воду.

Газ дожимается компрессором ПК-1, смешивается с ба­лансовым количеством бензина (повторное контактирова­ние) и после охлаждения в воздушном холодильнике Х-3, отделения от бензина в сепараторе С-2 и аминовой очистки от сероводорода в абсорбере К-4 выводится с установки. Бензин из сепаратора С-2 после стабилизации в колонне К-3 выводится е установки.

Читайте также:  Устройство и назначение диодов

Газ, выделившийся при стаби­лизации бензина из сепаратора С-3, выводится вместе с га­зом из фракционаторав абсорбер К-4 и далее — с установ­ки. Газойль из верхней части фракционаторачерез отпарную колонну К-2 выводится на смешение с остатком висбрекинга. Остаток висбрекинга с низа фракционаторана­сосом прокачивается через теплообменники Т-1, Т-2, час­тично возвращается во фракционатор в качестве квенча, а балансовое количество после смешения с газойлем выво­дится с установки.

I — сырье; II — химически очищенная вода; III — конденсат; IV — водяной пар; V — остаток висбрекинга; VI — газойль; VII — бензин; VIII — углеводородный газ; IX — кислая вода; X — регенерированный раствор ДЭА; XI — насыщенный раствор ДЭА.

Рисунок 1.4 – Схема установки висбрекинга

Технологический режим:

Печь (П-1):
на входе
на выходе
Сокинг-камера (П-2):
на входе
на выходе 9.5
Фракционатор (К-1):
Верх
Низ 3,25
Отпарная колонна (К-2):
Верх 3,1
Низ 3,2
Стабилизатор (К-3):
Верх
Низ

Материальный баланс.Ниже приводится материальный баланс установки висбрекинга:

Поступило
Гудрон 100.0
Получено
Углеводородный газ 1,7
Бензин висбрекинга 4,3
Газойль 11,3
Остаток висбрекинга 82,7
Всего 100,0

Расходные показатели(в расчете на 1 т сырья):

§ 34. Общие сведения о вторичных процессах переработки нефт термические процессы

Классификация вторичных процессов. Первичная перегон нефти позволяет выделять из нефти в виде отдельных фракц только те вещества, которые в ней изначально присутствуй Качество, количество и ассортимент получаемых продуктов цеД ком лимитируются химическим составом исходной нефти, f

Для увеличения выхода светлых нефтепродуктов — бензий керосиновых и дизельных фракций, улучшения качества получи ных при первичной перегонке продуктов широко используют процессы, которые называются вторичными. Применение вторн ных процессов позволяет дополнительно получить до 30—35′ светлых в расчете на нефть, повысить антидетонационные сво ства оензина, улучшить термическую стабильность реактивно топлива, снизить содержание серы в дизельном топливе И Т. Д^

С помощью вторичных процессов также вырабатывается сырье для нефтехимических производств — газообразные и жидкие ал-

кены, арены, нормальные алканы и др.

Вторичные процессы перержботки нефти подразделяют на тер­мические и термокаталитические. В особые группы выделяют про­цессы переработки нефтяных газов, производства масел и пара­финов, очистки светлых и темных нефтепродуктов.

Термические процессы. В эту группу входят процессы, в основе

которых способность органических соединений нефти под влия­нием высоких температур распадаться, химически видоизменять­ся, вступать в различные вторичные реакции между собой. В неф­теперерабатывающей промышленности применяются следующие термические процессы: термический крекинг, коксование, пиролиз.

Термический крекинг осуществляется при давлении до 5 МПа и температурах от 420 до 550 °С. Основные технические принципы крекинга под давлением были изложены в патенте, выданном в 1891 г. русским инженерам Шухову и Гаврилову. Но промышлен­ное освоение процесса началось лишь в XX в., когда в связи с развитием автомобильного транспорта значительно вырос спрос на бензин. Благодаря термическому крекингу дополнительно к прямогонному стали получать бензин из средних дистиллятов (лигроина, керосино-газойлевых фракций) и мазута. Выход бен­зина достигал 30 °/о на исходное сырье, а октановое число полу­ченного продукта в большинстве случаев было выше, чем у пря-

В 1950-х гг. в связи с повышением спроса на средние дистил­ляты произошло изменение сырьевой базы установок: на терми­ческий крекинг стали направлять только тяжелые фракции — остатки от перегонки нефти. Целевым продуктом стал крекинг-остаток, который используется как котельное топливо. Была раз­работана особая разновидность термического крекинга — висбре-кинг. Висбрекинг (легкий крекинг) проводится при давлении не выше 2,0 МПа и температуре 400—480 °С и предназначен для превращения гудрона в котельное топливо с низкими вязкостью

и температурой застывания.

Термический крекинг используется также в специальных

для получения высокоароматизированного сырья, используемо­го в производстве технического углерода (сажи);

для производства а-олефинов, применяемых затем при синтезе

В 1960—1980 гг. процесс термического крекинга временно по­терял свое значение в нашей стране и за рубежом: новые уста­новки не строились, а действующие на некоторых НПЗ .были переоборудованы под первичную перегонку нефти. В настоящее время в связи с совершенствованием топливно-энергетического баланса и намечающимся углублением переработки нефти наблюдается изменение отношения к процессу термического кре­кинга. На ряде отечественных НПЗ ведется строительство блоков

висбрекинга в составе комбинированных установок по переработке мазута термический крекинг дистиллятного сырья включается в

схемы комплексов по производству электродного кокса из сер­нистого сырья.

Коксование осуществляется при давлении 0,1—0,4 МПа и температуре от 450 до 540 °С. Основное назначение процесса — получение электродного кокса, из которого изготавливаются электроды и анодная масса. В качестве сырья используются кре­кинг-остатки, тяжелые пиролизные смолы, гудрон. Потребность в нефтяном коксе растет непрерывно, и поэтому во всем мире сооружаются новые установки коксования.

Читайте также:  Виноград и яблоки рецепт

Технология и аппаратурное оформление процесса коксования непрерывно совершенствуются. Простейшие установки коксова­ния — коксовые кубы начали строиться еще в 1920-х гг. В на­стоящее время для получения кокса в основном применяется про­цесс коксования в необогреваемых камерах (“замедленное коксо­вание”). Однако некоторые сорта кокса по-прежнему производят­ся только кубовым способом. Существует также процесс коксова­ния в кипящем слое, но он для получения электродного кокса не применяется.

Пиролиз осуществляется при давлении близком к атмосферно­му и температуре от 750 до 900 °С и является наиболее “старым” из термических процессов переработки нефти. Первые пиролизные заводы были построены в России еще в 70-х годах прошлого века. На этих заводах пиролизом керосина получали светильный газ. Позднее было обнаружено, что в смоле пиролиза содержатся аро­матические углеводороды — бензол и толуол. Установки пиролиза стали строить для того, чтобы увеличить выработку этих веществ. Особенно много пиролизных установок было построено в период первой мировой войны, поскольку толуол был необходим для по­лучения взрывчатого вещества — тринитротолуола.

В настоящее время пиролиз стал одним из основных процессов получения нефтехимического сырья. На пиролизных установках вырабатываются газы, богатые непредельными углеводородами — этиленом и пропиленом. Переработкой жидких фракций пироли­за получают широкую гамму ценных продуктов — бутилен-бута­диеновую фракцию, ароматические углеводороды, сырье для про­изводства технического углерода, нафталина и др. Пиролизу под­вергают предельные углеводородные газы и бензиновые фракции. Особую разновидность пиролиза представляет пиролиз метана, ко­торый проводится при температурах до 1200°С и предназначает­ся для получения ацетилена, водорода и технического углерода.

( 35. ВВЕДЕНИЕ В ТЕРМОДИНАМИКУ И КИНЕТИКУ ТЕРМИЧЕСКИХ РЕАКЦИЙ УГЛЕВОДОРОДОВ

Реакции углеводородов нефтяного сырья при высоких темпе­ратурах чрезвычайно многообразны. Наряду с термическим рас­падом молекул идут реакции синтеза и, частично, изомеризации.

Энергией Гиббса называется та часть внутренней энергии си-емы, которая может быть Превращена в работу. Она связана |’другими основными термодинамическими функциями — энталь-Ией Я и энтропией S уравнениями:

!• G = Н — TS; ДО = ЛЯ — Т Д5 |е Т — абсолютная температура, К.

Напомним, что изменение энтальпии ЛЯ для реакций, проте-ающих при постоянном давлении, представляет собой тепловой ффект реакции, взятый с обратным знаком, а член ГА5 отобра-кает ту часть внутренней энергии системы, которая может быть

ревращена в работу.

Если при выбранных условиях давления и температуры реак-?яя будет самопроизвольно протекать слева направо, то запас р-ергии Гиббса будет уменьшаться, так как часть ее превраща­лся в работу, AG при этом будет иметь знак минус. При дости-Сении химического равновесия G конечной системы будет рав-яться G начальной системы и AG = 0. Отсюда ясно, что чем ольше абсолютное значение AG со знаком плюс, тем менее осу-1еств,има, с термодинамической точки зрения, данная реакция. | Итак, знак при AG указывает на термодинамическую вероят-Ьсть прямой реакции. Чем больше абсолютное значение отрица-Ьльной величины AG, тем глубже может идти реакция и тем Цэльше будут равновесные концентрации продуктов реакции.

1 По величине AG может быть рассчитана константа равновесия [р согласно уравнению:

ie R— газовая постоянная, равная 8,317 Дж/моль.

I Так как константа равновесия представляет собой отноше-Йие произведения концентраций (или парциальных давлений для

* До недавнего времени эта термодинамическая функция называлась изме-нием свободной энергии или изобарно-изотермическим потенциалом и обозна­лась как AZ. Замена на ДО произведена в соответствии с рекомендацией еждународных химических организаций,

Изучив представленный материал, студент, будет знать теоретические основы термических процессов, их особенности и назначение. Кроме того, студент будет знать принципиальные технологические схемы термических процессов: термического крекинга, висбрекинга и замедленного коксования.

2.1 Теоретические основы термических процессов

К процессам термической деструкции относят термический крекинг, висбрекинг, коксование и пиролиз. Термические процессы в нефтепереработке применяются для углубления переработки нефти, понижения вязкости высококипящих фракций, получения непредельных соединений и кокса.

Термический крекинг это высокотемпературная (при 500-550 о С) переработка углеводородов нефти для получения сырья сажевого производства, бензина, кокса и др.

Висбрекинг это мягкий термический крекинг (450-500 о С) для получения котельного топлива путем снижения вязкости мазутов, гудронов и полугудронов.

Пиролиз термическое разложение углеводородов под действием высоких температур 700-900 о С, чаще всего для получения газообразных непредельных соединений (этилена и пропилена).

Коксование высокотемпературный процесс получения из остаточного сырья электродного иди топливного кокса (при температуре 490-500 о С).

При термической деструкции углеводородов (при температуре 500-900 о С) происходит образование продуктов с меньшей молекулярной массой, одновременно имеют место реакции синтеза.

Читайте также:  Скрутка большого количества проводов

Реакции распада: крекинг, дегидрирование, деалкилирование, дециклизация.

Реакции синтеза: конденсация, полимеризация, дегидроциклизация.

Реакции распада сопровождаются поглощением энергии. Эти реакции эндотермические. Реакции синтеза часто протекают с выделением энергии и их относят к экзотермическим реакциям.

Так как реакции обеих групп протекают с изменением объема, то для них имеет большое значение изменение внешнего давления. Увеличение давления для реакций, идущих с уменьшением объема, приводит к смещению равновесия вправо (к продуктам реакции). Напротив, для реакций, идущих с увеличением объема, сдвиг вправо (в сторону образования продуктов реакции) происходит при понижении давления. Не смотря на то, что термическое разложение происходит с увеличением объема практически все процессы ведут при повышенном давлении( около или более 5МПа). Повышенное давление позволяет подавить реакции глубокого распада, приводящие к повышенному газообразованию, то есть получению нецелевого продукта.

Реакции термического разложения углеводородов нефти

2.2 Промышленные процессы термической переработки нефти и нефтяных фракций

2.2.1.Термический крекинг

Процесс термического крекинга тяжелых нефтяных остатков в последние годы в мировой нефтеперера­ботке практически утратил свое "бензинопроизводящее" значение. В последнее время этот процесс используется для термопод­готовки дистиллятных видов сырья для установок коксования и произ­водства термогазойля( сырья для последующего получения технического углерода (сажи)).

В качестве сырья установки термического крекинга предпочтительно используют ароматизированные высококипящие дистилляты: тяжелые газойли каталитического крекинга, тяжелую смолу пиролиза и экстракты селективной очистки масел.

При термическом крекинге за счет преимущественного протекания реакций дегидроконденсации парафино-нафтеновых углеводородов образуются арены. Образующиеся при крекинге, а также содержащиеся в исходном сырье арены, подвергаются дальнейшей ароматизации.

Основными целевыми продуктами термического крекинга дистиллятного сырья являются термогазойль (фракция 200-480 °С) и дистиллятный крекинг-остаток — сырье установок замедленного коксования — с целью получения высококачествен­ного кокса, например игольчатой структуры. В процессе получают также газ и бензиновую фракцию.

Потребители сажевого сырья предъявляют повышенные требования к его ароматизованности и плот­ности. В термогазойле ограничиваются коксуемость, зольность и содержание смолисто-асфальтеновых веществ.

Термический крекинг дистиллятного сырья по технологическому оформлению установки практически мало чем отличаются от своих предшественников — установок двухпечного крекинга нефтяных остатков бензинового профиля. Это объясняется тем, что в связи с утратой бензинопроизводящего назначения кре­кинг-установок появилась возможность для использования их без суще­ственной реконструкции по новому назначению.

Ранее было установле­но, что при однократном крекинге не удается достичь требуемой глуби­ны термолиза тяжелого сырья из-за опасности закоксовывания змееви­ков печи и выносных реакционных аппаратов. Поэтому большим достижением в совершенствовании их технологии являлась разработка двухпечных систем термического крекинга, в которых в одной из печей проводят мягкий крекинг легко крекируемого исходного сырья, а во второй — жесткий крекинг более термостойких средних фракций термолиза.

На рис. 4 представлена принципиальная технологическая схема установки термического крекинга дистиллятного сырья, которая используется для производства вакуумного термога­зойля.

Исходное сырье после нагрева в теплообменниках подают в ниж­нюю секцию колонны К-3. Эта колонна разделена на две секции полу-глухой тарелкой, которая позволяет перейти в верхнюю секцию только парам. Продукты конденсации паров крекинга в верхней секции накапливают­ся в аккумуляторе (кармане) внутри колонны. Потоки тяжелого сырья, отбираемые соответственно с низа колонны, а легко­го сырья из аккумулятора К-3, подают в змеевики трубчатых печей. В печь П-1 подают тяжелое сырье, где оно нагревается до 500 о С, а легкое сырье направляют в печь П-2 где нагревают до температуры 550 °С и далее два потока направляют для углубления крекинга в выносную реакционную камеру К-1.

Рисунок – 4 Принципиальная технологическая схема установки термического крекинга дистиллятного сырья.

I – сырье, II – бензиновая фракция на стабилизацию, III тяжелая бензиновая фракция из К-4, IV вакуумный погон, V термогазойль, VI крекинг остаток, VII газы на ГФУ, VIII газы и водяной парк вакуум — системе, IX водяной пар.

Из камеры К-1 продукты крекинга затем подают в испаритель высокого давления К-2, а крекинг-остаток и термогазойль через редукционный клапан направляют в испаритель низкого давления К-4. Газы и пары бензино-керосиновых фракций направляют в колонну К-3.

С верха К-3 и К-4 уходящие газы и пары бензиновой фракции охлаждают в конденсаторе-холодильнике и подают в газосепараторы С-1 и С-2. Газы подают на разделение на газофракционирующую установку (ГФУ), а основное коли­чество бензиновой фракции отправляют на стабилизацию.

Крекинг-остаток, выводимый гудрона получено, % масс.: 5 – газ, 1.3 – головка стабилизации бензина, 20.1 – фракция стабильного бензина, 52.6 – термогазойль, 19.9 – крекинг остаток, 1.1 – потери.

Ссылка на основную публикацию
Adblock detector