Температура горения бутана в горелке

Температура горения бутана в горелке

Пла́мя — раскаленная газообразная среда, образующаяся при горении и электроразрядах, состоящая в значительной степени из частично ионизированных частиц, в которой происходят химические взаимодействия и физико-химические превращения составных частиц среды (в т.ч. горючего, окислителя, примесных частиц, продуктов их взаимодействия). Сопровождается интенсивным излучением (в УФ, ИК, видимой части спектра — «свечением») и выделением тепла.

В русском языке нет четкого смыслового разделения слов пламя и огонь, однако слово огонь традиционно связано с описанием процессов горения, тогда как пламя имеет более общее употребление, в том числе для процессов, не связанных с горением: молнией, электродугой, свечением вакуумных ламп и так далее.

Иногда в научной литературе пламя относят к «холодной/низкотемпературной плазме», поскольку по существу оно представляет собой газ, состоящий из термически ионизированных частиц с небольшой величиной заряда (как правило, не более ±2-3), тогда как высокотемпературной плазмой называют состояние вещества, при котором ядра атомов и их электронные оболочки сосуществуют раздельно.

Среда пламени содержит заряженные частицы (ионы, радикалы), что обусловливает наличие электропроводности пламени и его взаимодействие с электромагнитными полями. На этом принципе построены приборы, способные с помощью электромагнитного излучения приглушить пламя, оторвать от горючих материалов или изменить его форму [1] .

Содержание

Цвет пламени [ править | править код ]

Цвет пламени определяется излучением электронных переходов (например, тепловым излучением) различных возбужденных (как заряженных, так и незаряженных) частиц, образующихся в результате химической реакции между молекулами горючего и кислородом воздуха, а также в результате термической диссоциации. В частности, при горении углеродного горючего в воздухе, синяя часть цвета пламени обусловлена излучением частиц CN ±n , красно-оранжевая — излучением частиц С2 ±n и микрочастиц сажи. Излучение прочих образующихся в процессе горения частиц (CHx ±n , H2O ±n , HO ±n , CO2 ±n , CO ±n ) и основных газов (N2, O2, Ar) лежит в невидимой для человеческого глаза УФ и ИК части спектра. Кроме того, на окраску пламени сильно влияет присутствие в самом топливе, деталях конструкции горелок, сопел и так далее соединений различных металлов, в первую очередь натрия. В видимой части спектра излучение натрия крайне интенсивно и ответственно за оранжево-желтый цвет пламени, при этом излучение чуть менее распространенного калия оказывается на его фоне практически не различимым (поскольку большинство организмов имеют в составе клеток K+/Na+ каналы, то в углеродном горючем растительного или животного происхождения на 3 атома натрия приходится в среднем 2 атома калия).

Температура пламени [ править | править код ]

  • Температура воспламенения для большинства твёрдых материалов — 300 °С.
  • Температура пламени в горящей сигарете — 250–300 °С. [источник не указан 740 дней]
  • Температура пламени спички 750–1400 °С; при этом 300 °С — температура воспламенения дерева, а температура горения дерева равняется примерно 500–800 °С.
  • Температура горения пропан-бутана — 800–1970 °С.
  • Температура пламени керосина — 800 °С, в среде чистого кислорода — 2000 °С.
  • Температура горения бензина — 1300–1400 °С.
  • Температура пламени спирта не превышает 900 °С.
  • Температура горения магния — 2200 °С; значительная часть излучения в УФ-диапазоне.
Читайте также:  Устройство задвижки с чертежом

Наиболее высокие известные температуры горения: дицианоацетилен C4N2 5’260 К (4’990 °C) в кислороде и до 6’000 К (5’730 °C) в озоне [2] ; дициан (CN)2 4’525 °C в кислороде [3] .

Так как вода обладает очень большой теплоёмкостью, отсутствие водорода в горючем исключает потери тепла на образование воды и позволяет развить бо́льшую температуру.

Классификация [ править | править код ]

Пламя классифицируют по:

  • агрегатному состоянию горючих веществ: пламя газообразных, жидких, твёрдых и аэродисперсных реагентов;
  • излучению: светящиеся, окрашенные, бесцветные;
  • состоянию среды горючее–окислитель: диффузионные, предварительно перемешанных сред (см. ниже);
  • характеру перемещения реакционной среды: ламинарные, турбулентные, пульсирующие;
  • температуре: холодные, низкотемпературные, высокотемпературные;
  • скорости распространения: медленные, быстрые;
  • высоте: короткие, длинные;
  • визуальному восприятию: коптящие, прозрачные, цветные.

Внутри конуса ламинарного диффузионного пламени можно выделить 3 зоны (оболочки):

  1. тёмная зона (300—350 °C), где горение не происходит из-за недостатка окислителя;
  2. светящаяся зона, где происходит термическое разложение горючего и частичное его сгорание (500—800 °C);
  3. едва светящаяся зона, которая характеризуется окончательным сгоранием продуктов разложения горючего и максимальной температурой (900—1500 °C).

Температура пламени зависит от природы горючего вещества и интенсивности подвода окислителя.

Распространение пламени по предварительно перемешанной среде (невозмущённой), происходит от каждой точки фронта пламени по нормали к поверхности пламени: величина такой нормальной скорости распространения пламени (НСРП) является основной характеристикой горючей среды. Она представляет собой минимально возможную скорость пламени. Значения НСРП отличаются у различных горючих смесей — от 0,03 до 15 м/с.

Распространение пламени по реально существующим газовоздушным смесям всегда осложнено внешними возмущающими воздействиями, обусловленными силами тяжести, конвективными потоками, трением и так далее. Поэтому реальные скорости распространения пламени всегда отличаются от нормальных. В зависимости от характера горения, скорости распространения пламени имеют следующие диапазоны величин: при дефлаграционном горении — до 100 м/с; при взрывном горении — от 300 до 1000 м/с; при детонационном горении — свыше 1000 м/с.

Окислительное пламя [ править | править код ]

Расположено в верхней, самой горячей части пламени, где горючие вещества практически полностью превращены в продукты горения. В данной области пламени избыток кислорода и недостаток топлива, поэтому помещённые в эту зону вещества интенсивно окисляются.

Восстановительное пламя [ править | править код ]

Это часть пламени, наиболее близко расположенная к центру или чуть ниже центра пламени. В этой области пламени много топлива и мало кислорода для горения, поэтому, если внести в эту часть пламени вещество, содержащее кислород, то кислород отнимается у вещества.

Читайте также:  Как измерить диаметр сверла штангенциркулем

Проиллюстрировать это можно на примере реакции восстановления сульфата бария BaSO4. С помощью платиновой петли забирают BaSO4 и нагревают его в восстановительной части пламени спиртовой горелки. При этом сульфат бария восстанавливается и образуется сульфид бария BaS. Поэтому пламя и называют восстановительным.

Цвет пламени зависит от нескольких факторов. Наиболее важны: температура, наличие в пламени микрочастиц и ионов, определяющих эмиссионный спектр.

Применение [ править | править код ]

Пламя (окислительное и восстановительное) используется в аналитической химии, в частности, при получении окрашенных перлов для быстрой идентификации минералов и горных пород, в том числе в полевых условиях, с помощью паяльной трубки.

Пламя в условиях невесомости [ править | править код ]

В условиях, когда ускорение свободного падения компенсируется центробежной силой, например, при полёте по орбите земли, горение вещества выглядит несколько иначе. Поскольку ускорение свободного падения компенсировано, сила Архимеда практически отсутствует. Таким образом, в условиях невесомости горение веществ происходит у самой поверхности вещества (пламя не вытягивается), а сгорание более полное. Продукты горения постепенно равномерно распространяются в среде. Это весьма опасно для систем вентилирования. Также серьёзную опасность представляют пудры, поэтому в космосе порошкообразные материалы не применяются нигде, кроме специальных опытов именно с порошками.

В струе воздуха пламя вытягивается и принимает привычный облик. Пламя газовых горелок благодаря давлению газа в условиях невесомости внешне также не отличается от горения в земных условиях.

См. также [ править | править код ]

  • Горение, в том числе беспламенное горение.
  • Огонь
  • Пирохимический анализ — методы обнаружения химических элементов по различному окрашиванию пламени.

Литература [ править | править код ]

Тидеман Б. Г., Сциборский Д. Б. Химия горения. — Л. , 1935.

Что нужно знать о техническом пропане?

Пропан технический представляет собой органическое вещество, относящееся к классу алканов. Он может быть природным и техническим, который образуется во время крекинга нефтепродуктов. Пропан известен как один из самых ядовитых газов.

Пропан технический: свойства

Среди основных параметров вещества стоит отметить следующие:

  • сумма пропилена и пропана составляет не менее 75 % от всего объема (количество последнего не нормируется);
  • сумма бутанов и непредельных углеводородов — не нормируется;
  • количество жидкого остатка не должна превышать 0,7 % об.;
  • давление насыщенных паров при температуре – 20 ◦С должно быть не менее 0,16 МПа;
  • количество сероводорода и меркаптановой серы не должна превышать 0,013 % от всего объема;
  • интенсивность запаха пропана должна превышать 3 балла.

Минимальная температур горения пропана составляет — 35 °C. Благодаря этому работать с газом можно в любых условиях. Самовоспламеняется пропан, при нормальном атмосферном давлении, при температуре в 466 °C. При 97 °C возникает критическая температура пропана. Температура горения пропан-бутана колеблется от 800 до 1970 °С, пламя сгорания чистого пропана имеет температуру около 2526 °C, а жаропроизводительность, в среднем, составляет 2110 °C. В газовых резаках, при смеси с кислородом от 1:4 до 1:5 (пропан:кислород), возникает температура пламени до 2830 °C.

Читайте также:  Плитка под дерево казань

Использование технического пропана

Технический пропан может быть использован в следующих сферах:

  • в качестве топлива для грузовиков, при выполнении работ разного характера в промышленности;
  • в строительстве: для резки металлолома, сварки, во время кровельных работ, для разогрева асфальта, для обогрева помещений;
  • в быту для приготовления пищи, отопления дома, подогрева воды;
  • в пищевой и химической промышленности для растворителей или в качестве пищевой добавки, известной как Е944.

Отличие пропана от метана

Среди отличительных особенностей пропана стоит отметить:

  • более высокая эффективность при сгорании, благодаря чему он намного эффективнее метана во время проведения сварочных работ;
  • высокая инертность газа, что позволяет ему более активно вступать в разнообразные химические реакции;
  • пропан безопаснее метана и отличается наличием наркотического действия;
  • при транспортировке пропана не нужно использовать какое-то специальное оборудование, достаточно обычных стальных баллонов.

Кроме этого, пропан является более дешевым и легче заправляется.

Особенности хранения

Для хранения и перевозки пропана используют металлические баллоны, которые окрашены в ярко0красный цвет. Их нельзя размещать в условиях слишком низких или слишком высоких температур, так как возможно изменения агрегатного стана вещества и появляется риск взрыва.

Как видим, пропан – это невероятны полезное вещество, применяемое в самых разных сферах, при работе с которых нужно знать массу нюансов и правила безопасной эксплуатации.

Для образования высокотемпературного пламени при газовой сварке, пайке, нагреве и других операциях тепловой обработки металлов используются горючие газы. Горючий газ может быть использован, как в чистом виде, так и в смеси с кислородом. Газово-кислородная смесь имеет более высокую температуру горения. Смеси горючего газа с кислородом используют в газосварочных постах.

Горючие газы можно разделить на две группы:

  1. Сжимаемые или сжатые- это такие газы, которые в обычных условиях хранения не превращаются в жидкое состояние ( примеры сжатых газов: метан, водород, многокомпонентные газы)
  2. Сжиженные это газы, которые при обычных условиях хранения имеют жидкое состояние ( пропан, бутан и их смеси)

Сжиженный газ по сравнению со сжатым обладает следующими преимуществами:

  • в баллонах одинаковой емкости сжиженного газа помещается примерно в 2 раза больше, чем сжатого;
  • сжиженный газ при сгорании выделяет теплоты в 3 раза больше, чем такое же объемное количество сжатого газа;
  • сжиженный газ хранят в резервуарах при давлении более чем в 10 раз меньшем по сравнению со сжатым, что снижает стоимость
Ссылка на основную публикацию
Adblock detector