Таблица излучения частот и длин волн

Таблица излучения частот и длин волн

Шкала электромагнитных волн. Шкала электромагнитных волн. Длина / Частота / Название.

Шкала электромагнитных волн. Шкала электромагнитных волн. Длина / Частота / Название.

Длина волн Частота (гц)

Диапазоны

Название группы волн (или частот) Основные способы получения и применения 10 8 км 10 13 cм 3*10 -3 Инфранизкие частоты

Генераторы специальных конструкций

10 7 км 10 12 cм 3*10 -2

Генераторы переменного тока;

приборов и двигателей

питается переменным током 50-60 гц.

Звуковые генераторы.

Используются в электроакустике

(микрофоны), кино, радиовещании.

10 6 км 10 11 cм 3*10 -1 10 5 км 10 10 cм 3*1 10 4 км 10 9 cм 3*10 10 3 км 10 8 cм 3*10 2 10 2 км 10 7 cм 3*10 3 10 км 10 6 cм 3*10 4 1 км 10 5 cм 3*10 5 Длинные

Генераторы электрических колебаний различных конструкций.

Используются в телеграфии, радиовещании,

телевидении, радиолокации и т.д.

Метровые и дециметровые волны используются

для исследования свойств вещества.

10 -1 км 10 4 cм 3*10 6 Средние 10 -2 км 10 3 cм 3*10 7 Короткие 1 м 10 2 cм 3*10 8 1 дм 10 cм 3*10 9 Дециметровые 1 см 1 см 3*10 10

Получаются в магнетронных, клистронных

генераторах и мазерах.

Применяются в радиолокации,

радиоспектроскопии и радиоастрономии.

1 мм 10 -1 cм 3*10 11 10 2 мкм 10 -2 cм 3*10 12

Излучение нагретых тел (газоразрядные лампы и т.п.)

Используются в инфракрасной спектроскопии,

при фотографировании в темноте (в инфракрасных лучах)

10 мкм 10 -3 cм 3*10 13 1 мкм 10 -4 cм 3*10 14 10 2 нм 10 -5 cм 3*10 15

Излучение Солнца, ртутных ламп и т.п.

Используются в ультрафиолетовой

микроскопии, в медицине.

10 нм 10 -6 cм 3*10 16 1 нм 10 -7 cм 3*10 17 1 Å 10 -8 cм 3*10 18 Ультрамягкие

Получаются в рентгеновских трубках и в других приборах,

где происходит торможение электронов с энергией более 10 5 эв.

Используются в медицине, для изучения строения вещества,

10 -1 Å 10 -9 cм 3*10 19 Мягкие 10 -2 Å 10 -10 cм 3*10 20 Жесткие 1 X 10 -11 cм 3*10 21

Возникают при радиоактивных распадах ядер,

при торможении электронов энергией более 10 5 эв

и при других взаимодействиях элементарных частиц.

Разделы: Физика

Цель урока: обеспечить в ходе урока повторение основных законов, свойств электромагнитных волн;

Образовательная: Систематизировать материал по теме, осуществить коррекцию знаний, некоторое ее углубление;

Развивающая: Развитие устной речи учащихся, творческих навыков учащихся, логики, памяти; познавательных способностей;

Воспитательная: Формировать интерес учащихся к изучению физики. воспитывать аккуратность и навыки рационального использования своего времени;

Тип урока: урок повторения и коррекции знаний;

Оборудование : компьютер, проектор, презентация «Шкала электромагнитных излучений», диск « Физика. Библиотека наглядных пособий».

Ход урока:

1. Объяснение нового материала.

1. Мы знаем, что длина электромагнитных волн бывает самой различной: от значений порядка 1013 м (низкочастотные колебания) до 10 -10 м (g- лучи). Свет составляет ничтожную часть широкого спектра электромагнитных волн. Тем не менее, именно при изучении этой малой части спектра были открыты другие излучения с необычными свойствами.
2. Принято выделять низкочастотное излучение, радиоизлучение, инфракрасные лучи, видимый свет, ультрафиолетовые лучи, рентгеновские лучи и g-излучение. Со всеми этими излучениями, кроме g-излучения, вы уже знакомы. Самое коротковолновое g-излучение испускают атомные ядра.
3. Принципиального различия между отдельными излучениями нет. Все они представляют собой электромагнитные волны, порождаемые заряженными частицами. Обнаруживаются электромагнитные волны, в конечном счете, по их действию на заряженные частицы. В вакууме излучение любой длины волны распространяется со скоростью 300 000 км/с. Границы между отдельными областями шкалы излучений весьма условны.
4. Излучения различной длины волны отличаются друг от друга по способу их получения (излучение антенны, тепловое излучение, излучение при торможении быстрых электронов и др.) и методам регистрации.
5. Все перечисленные виды электромагнитного излучения порождаются также космическими объектами и успешно исследуются с помощью ракет, искусственных спутников Земли и космических кораблей. В первую очередь это относится к рентгеновскому и g-излучениям, сильно поглощаемом атмосферой.
6. По мере уменьшения длины волны количественные различия в длинах волн приводят к существенным качественным различиям.
7. Излучения различной длины волны очень сильно отличаются друг от друга по поглощению их веществом. Коротковолновые излучения (рентгеновское и особенно g-лучи) поглощаются слабо. Непрозрачные для волн оптического диапазона вещества прозрачны для этих излучений. Коэффициент отражения электромагнитных волн также зависит от длины волны. Но главное различие между длинноволновым и коротковолновым излучениями в том, что коротковолновое излучение обнаруживает свойства частиц.

Обобщим знания о волнах и запишем все виде таблиц.

1. Низкочастотные колебания

Низкочастотные колебания Длина волны(м) 10 13 — 10 5 Частота(Гц) 3· 10 -3 — 3 ·10 3 Энергия(ЭВ) 1 – 1,24 ·10 -10 Источник Реостатный альтернатор, динамомашина,
Вибратор Герца,
Генераторы в электрических сетях (50 Гц)
Машинные генераторы повышенной ( промышленной) частоты ( 200 Гц)
Телефонные сети ( 5000Гц)
Звуковые генераторы ( микрофоны, громкоговорители) Приемник Электрические приборы и двигатели История открытия Лодж ( 1893 г.), Тесла ( 1983 ) Применение Кино, радиовещание( микрофоны, громкоговорители)

2. Радиоволны

Радиоволны
Длина волны(м) 10 5 — 10 -3
Частота(Гц) 3 ·10 3 — 3 ·10 11
Энергия(ЭВ) 1,24 ·10-10 — 1,24 · 10 -2
Источник Колебательный контур
Макроскопические вибраторы
Приемник Искры в зазоре приемного вибратора
Свечение газоразрядной трубки, когерера
История открытия Феддерсен ( 1862 г.), Герц ( 1887 г.), Попов , Лебедев, Риги
Применение Сверхдлинные— Радионавигация, радиотелеграфная связь, передача метеосводок
Длинные – Радиотелеграфная и радиотелефонная связь, радиовещание, радионавигация
Средние— Радиотелеграфия и радиотелефонная связь радиовещание, радионавигация
Короткие— радиолюбительская связь
УКВ— космическая радио связь
ДМВ— телевидение, радиолокация, радиорелейная связь, сотовая телефонная связь
СМВ- радиолокация, радиорелейная связь, астронавигация, спутниковое телевидение
ММВ— радиолокация
Читайте также:  Что такое станция катодной защиты

Инфракрасное излучение
Длина волны(м) 2 ·10 -3 — 7,6· 10 -7
Частота(Гц) 3 ·10 11 — 3 ·10 14
Энергия(ЭВ) 1,24· 10 -2 – 1,65
Источник Любое нагретое тело: свеча, печь, батарея водяного отопления, электрическая лампа накаливания
Человек излучает электромагнитные волны длиной 9 10 -6 м
Приемник Термоэлементы, болометры, фотоэлементы, фоторезисторы, фотопленки
История открытия Рубенс и Никольс ( 1896 г.),
Применение В криминалистике, фотографирование земных объектов в тумане и темноте, бинокль и прицелы для стрельбы в темноте, прогревание тканей живого организма ( в медицине), сушка древесины и окрашенных кузовов автомобилей, сигнализация при охране помещений, инфракрасный телескоп,

4. Видимое излучение

Видимое излучение
Длина волны(м) 6,7· 10 -7 — 3,8 ·10 -7
Частота(Гц) 4· 10 14 — 8· 10 14
Энергия(ЭВ) 1,65 – 3,3 ЭВ
Источник Солнце, лампа накаливания, огонь
Приемник Глаз, фотопластинка, фотоэлементы, термоэлементы
История открытия Меллони
Применение Зрение
Биологическая жизнь

5. Ультрафиолетовое излучение

Ультрафиолетовое излучение
Длина волны(м) 3,8 10 -7 — 3 ·10 -9
Частота(Гц) 8 ·10 14 — 10 17
Энергия(ЭВ) 3,3 – 247,5 ЭВ
Источник Входят в состав солнечного света
Газоразрядные лампы с трубкой из кварца
Излучаются всеми твердыми телами , у которых температура больше 1000 ° С, светящиеся ( кроме ртути)
Приемник Фотоэлементы,
Фотоумножители,
Люминесцентные вещества
История открытия Иоганн Риттер, Лаймен
Применение Промышленная электроника и автоматика,
Люминисценнтные лампы,
Текстильное производство
Стерилизация воздуха

6. Рентгеновское излучение

Рентгеновское излучение
Длина волны(м) 10 -9 — 3 ·10 -12
Частота(Гц) 3 ·10 17 — 3 ·10 20
Энергия(ЭВ) 247,5 – 1,24 ·105 ЭВ
Источник Электронная рентгеновская трубка ( напряжение на аноде – до 100 кВ. давление в баллоне – 10 -3 – 10 -5 н/м 2 , катод – накаливаемая нить . Материал анодов W,Mo, Cu, Bi, Co, Tl и др.
Η = 1-3%, излучение – кванты большой энергии)
Солнечная корона
Приемник Фотопленка,
Свечение некоторых кристаллов
История открытия В. Рентген , Милликен
Применение Диагностика и лечение заболеваний ( в медицине), Дефектоскопия ( контроль внутренних структур, сварных швов)

7. Гамма — излучение

Гамма — излучение
Длина волны(м) 3,8 ·10 -11 — меньше
Частота(Гц) 8· 10 14 — больше
Энергия(ЭВ) 9,03 ·10 3 – 1, 24 ·10 16 ЭВ
Источник Радиоактивные атомные ядра, ядерные реакции, процессы превращения вещества в излучение
Приемник счетчики
История открытия
Применение Дефектоскопия;
Контроль технологических процессов;
Терапия и диагностика в медицине

Вывод
Вся шкала электромагнитных волн является свидетельством того, что все излучения обладают одновременно квантовыми и волновыми свойствами. Квантовые и волновые свойства в этом случае не исключают, а дополняют друг друга. Волновые свойства ярче проявляются при малых частотах и менее ярко — при больших. И наоборот, квантовые свойства ярче проявляются при больших частотах и менее ярко — при малых. Чем меньше длина волны, тем ярче проявляются квантовые свойства, а чем больше длина волны, тем ярче проявляются волновые свойства. Все это служит подтверждением закона диалектики (переход количественных изменений в качественные ).

  1. « Физика- 11» Мякишев
  2. Диск «Уроки физики Кирилла и Мефодия. 11 класс»( ))) «Кирилл и Мефодий, 2006)
  3. Диск « Физика. Библиотека наглядных пособий. 7-11 классы»( ( 1С: «Дрофа» и «Формоза» 2004)
  4. Ресурсы Интернета

Электромагнитные волны классифицируются по длине волны λ или связанной с ней частотой волны f. Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в этом курсе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

    • Низкочастотные волны;
    • Радиоволны;
    • Инфракрасное излучение;
    • Световое излучение;
    • Ультрафиолетовое излучение;
    • Рентгеновское излучение;
    • Гамма излучение.

    Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ, но каждый диапазон обусловлен своими особенностями и превалированием своих законов, определяемых соотношениями линейных масштабов.

    Низкочастотные волны

    Низкочастотные волны представляют собой электромагнитные волны, частота колебаний которых не превышает 100 КГц). Именно этот диапазон частот традиционно используется в электротехнике. В промышленной электроэнергетике используется частота 50 Гц, на которой осуществляется передача электрической энергии по линиям и преобразование напряжений трансформаторными устройствами. В авиации и наземном транспорте часто используется частота 400 Гц, которая дает преимущества по весу электрических машин и трансформаторов в 8 раз по сравнению с частотой 50 Гц. В импульсных источниках питания последних поколений используются частоты трансформирования переменного тока единицы и десятки кГц, что делает их компактными, энергонасышенными.
    Коренным отличием низкочастотного диапазона от более высоких частот является падение скорости электромагнитных волн пропорционально корню квадратному их частоты от 300 тыс. км/с при 100 кГц до примерно 7 тыс км/с при 50 Гц.

    Читайте также:  Свиные колбаски как готовить

    Радиоволны

    Радиоволны представляют собой электромагнитные волны, длины которых превосходят 1 мм (частота меньше 3 10 11 гц = 300 Ггц) и менее 3 км (выше 100 кГц).

    Радиоволны делятся на:

    Биологическое действие радиоволнового излучения

    Страшный жертвенный опыт применения мощного радиоволнового излучения в радиолокационной технике показал специфичное действие радиоволн в зависимости от длины волны (частоты).

    На человеческий организм разрушительное действие оказывает не столько средняя, сколько пиковая мощность излучения, при которой происходят необратимые явления в белковых структурах. К примеру, мощность непрерывного излучения магнетрона СВЧ-печи (микроволновки), составляющая 1 КВатт, воздействует лишь на пищу в малом замкнутом (экранированном) объеме печи, и почти безопасна для человека, находящегося рядом. Мощность радиолокационной станции (РЛС, радара) в 1 КВатт средней мощности, излучаемой короткими импульсами скважностью 1000:1 (отношение периода повторения к длительности импульса) и, соответственно, импульсной мощностью в 1 МВатт, очень опасна для здоровья и жизни человека на расстоянии до сотен метров от излучателя. В последнем, конечно, играет роль и направленность излучения РЛС, которая подчеркивает разрушительное действие именно импульсной, а не средней мощности.

    Воздействие метровых волн

    Метровые волны большой интенсивности, излучаемые импульсными генераторами метровых радиолокационных станций (РЛС), имеющих импульсную мощность более мегаватта (таких, например, как станция дальнего обнаружения П-16) и соизмеримые с протяженностью спинного мозга человека и животных, а таже длиной аксонов, нарушают проводимость этих структур, вызывая диэнцефальный синдром (СВЧ-болезнь). Последняя приводит к быстрому развитию (в течение от нескольких месяцев до нескольких лет) полному или частичному (в зависимости от полученной импульсной дозы излучения) необратимому параличу конечностей человека, а также нарушению иннервации кишечника и других внутренних органов.

    Воздействие дециметровых волн

    Дециметровые волны соизмеримы по длине волны с кровеносными сосудами, охватывающими такие органы человека и животных, как легкие, печень и почки. Это одна из причин, почему они вызывают развитие "доброкачественных" опухолей (кист) в этих органах. Развиваясь на поверхности кровеносных сосудов, эти опухоли приводят к остановке нормального кровообращения и нарушению работы органов. Если вовремя не удалить такие опухоли оперативным путем, то наступает гибель организма. Дециметровые волны опасных уровней интенсивности излучают магнетроны таких РЛС, как мобильная РЛС ПВО П-15, а также РЛС некоторых воздушных судов.

    Воздействие сантиметровых волн

    Мощные сантиметровые волны вызывают такое заболевание, как лейкемию — "белокровие", а также другие формы злокачественных опухолей человека и животных. Волны достаточной для возникновения этих заболеваний интенсивности генерируют РЛС сантиметрового диапазона П-35, П-37 и практически все РЛС воздушных судов.

    Инфракрасное, световое и ультрафиолетовое излучения

    Инфракрасное, световое, ультрафиолетовое излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Этот спектр занимает диапазон длин электромагнитных волн в интервале от 2·10 -6 м = 2мкм до 10 -8 м = 10нм (по частоте от1,5·10 14 гц до 3·10 16 гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

    Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

    С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов. Инфракрасное излучение является видимым для многих членистоногих (насекомых, пауков и пр.) и рептилий (змей, ящериц и пр.) , доступным для полупроводниковых датчиков (инфракрасных фотоматриц), но его не пропускает толща атмосферы Земли, что не позволяет наблюдать с поверхности Земли инфракрасные звезды — "коричневые карлики", которые составляют более 90% всех звёзд в Галактике.

    Ширина оптического диапазона по частоте составляет примерно 18 октав, из которых на оптический диапазон приходится примерно одна октава (); на ультрафиолет — 5 октав (), на инфракрасное излучение — 11 октав (

    В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

    Свет, световое, видимое излучение — видимая глазами человека и приматов часть оптического спектра электромагнитного излучения, занимает диапазон длин электромагнитных волн в интервале от 400 нанометров до 780 нанометров, то есть менее одной октавы — двухкратного изменения частоты.

    Рис. 1.14. Шкала электромагнитных волн

    Словесный мем-запоминалка порядка следования цветов в световом спектре:
    " К аждая О безьяна Ж елает З нать Г лавный С екрет Ф изики" —
    " Красный , Оранжевый , Желтый , Зелёный , Голубой , Синий , Фиолетовый ".

    Рентгеновское и гамма излучение

    Электромагнитная природа света

    Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

    Читайте также:  Нефритовый роликовый массажер для лица

    Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет — соответствует фиолетовой границе.

    Естественный (дневной, солнечный) свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого человеком спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10 -8 сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер . По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.

    , (1.42)
    , (1.43)

    Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления является функция координат точек среды. Если описать функцией форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала, а в аналитической механике как уравнение Гамильтона — Якоби:

    Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким — либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.

    На самом деле никакого дуализма в природе электромагнитных волн нет. Как показал Макс Планк в 1900 году в своей классической работе "О нормальном спектре излучения", электромагнитные волны представляют собой отдельные квантованные колебания частотой v и энергией E=hv, где h =const, в эфире. Последний есть сверхтекучая среда, имеющая стабильное свойство разрывности мерой h — постоянная Планка. При воздействии на эфир энергией, превышающей hv во время излучения происходит образование квантованного "вихря". Точно такое же явление наблюдается во всех сверхтекучих средах и образование в них фононов — квантов звукового излучения.

    За "copy-and-paste" совмещение открытия Макса Планка 1900 года с открытым еще в 1887 году Генрихом Герцем фотоэффектом, в 1921 году Нобелевский комитет присудил премию Альберту Эйнштейну

    Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

    Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории — измените факт" (В другом варианте " — Факт не соответствует теории? — Тем хуже для факта").

    Максимально, на что может претендовать "мысленный эксперимент" — это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

    Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.

    Понятие "мысленный эксперимент" придумано специально спекулянтами — релятивистами для шулерской подмены реальной проверки мысли на практике (эксперимента) своим "честным словом". Подробнее читайте в FAQ по эфирной физике.

    НОВОСТИ ФОРУМА
    Рыцари теории эфира
    01.10.2019 — 05:20: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
    [center][Youtube]69vJGqDENq4[/Youtube][/center]
    [center]14:36[/center]
    Osievskii Global News
    29 сент. Отправлено 05:20, 01.10.2019 г.’ target=_top>Просвещение от Вячеслава Осиевского — Карим_Хайдаров.
    30.09.2019 — 12:51: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
    [center][Ok]376309070[/Ok][/center]
    [center]11:03[/center] Отправлено 12:51, 30.09.2019 г.’ target=_top>Просвещение от Дэйвида Дюка — Карим_Хайдаров.
    30.09.2019 — 11:53: ВОСПИТАНИЕ, ПРОСВЕЩЕНИЕ, ОБРАЗОВАНИЕ — Upbringing, Inlightening, Education ->
    [center][Youtube]VVQv1EzDTtY[/Youtube][/center]
    [center]10:43[/center]

    интервью Раввина Борода https://cursorinfo.co.il/all-news/rav.
    мой телеграмм https://t.me/peshekhonovandrei
    мой твиттер https://twitter.com/Andrey54708595
    мой инстаграм https://www.instagram.com/andreipeshekhonow/

    [b]Мой комментарий:
    Андрей спрашивает: Краснодарская синагога — это что, военный объект?
    — Да, военный, потому что имеет разрешение от Росатома на манипуляции с радиоактивными веществами, а также иными веществами, опасными в отношении массового поражения. Именно это было выявлено группой краснодарцев во главе с Мариной Мелиховой.

    [center][Youtube]CLegyQkMkyw[/Youtube][/center]
    [center]10:22 [/center]

    Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
    https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

    Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
    http://av-inf.blogspot.com/2013/12/dalles.html

    [center][b]Сон разума народа России [/center]

    [center][Youtube]CLegyQkMkyw[/Youtube][/center]
    [center]10:22 [/center]

    Доминико Риккарди: Россию ждёт страшное будущее (хотелки ЦРУ):
    https://tainy.net/22686-predskazaniya-dominika-rikardi-o-budushhem-rossii-sdelannye-v-2000-godu.html

    Завещание Алена Даллеса / Разработка ЦРУ (запрещено к ознакомлению Роскомнадзором = Жид-над-рус-надзором)
    http://av-inf.blogspot.com/2013/12/dalles.html

    [center][b]Сон разума народа России [/center]

    Ссылка на основную публикацию
    Adblock detector