Схема включения биполярного транзистора с общей базой

Схема включения биполярного транзистора с общей базой

Цель работы — снятие и анализ входных и выход­ных характеристик транзистора, включенного с ОБ; опре­деление по ним h-параметров (рисунок1).

Пояснения. Биполярные транзисторы являются наи­более универсальными и распространенными полупроводниковыми приборами, предназначенными для усиле­ния и генерирования электрических колебаний, и имеют трехслойную р-n-р- или n-р-n-структуру (рисунок 19). Каждый слой имеет вывод, название которого совпадает с названием слоя или области транзистора. Среднюю область транзистора называют базой, а крайние — эмит­тером и коллектором. Эти транзисторы получили назва­ние биполярных потому, что перенос тока в них осу­ществляется носителями заряда двух типов: электронами и дырками.

Рисунок – 18 Функциональная схема с общей базой. Рисунок – 19 Структурная схема транзистора.

Биполярный транзистор имеет два p-n-перехода — эмиттерный П1 и коллекторный П2 — и два запирающих слоя с контактными разностями потенциалов UK1 и UK2, обусловливающих напряженности ЕK1 и EK2 электрических полей в них. Ширина переходов I01и I02 ширина базовой области IБ.

В зависимости от выполняемых в схеме функций транзистор может работать в трех режимах.

В активном режиме транзистор работает в усилителях, когда требуется усиление электрических сигналов с минимальным искажением из формы. При этом на эмиттерный переход подают внешнее напряжение в прямом направлений, а на коллекторный – в обратном (рисунок 20).

Рисунок – 20 Схема транзистора.

Основные носители эмиттера под действием напряжения Uэб преодолевают эмиттерный переход, а им на встречу движутся основные носители базы, которых значительно меньше, поскольку концентрация примеси в базе мала. Часть дырок эмиттера рекомбинирует с элек­тронами базы вблизи перехода П1, а остальные инжектируются (впрыскиваются) в базовую область.

На пути к коллекторному переходу часть дырок эмиттера рекомбинирует с электронами базы (в реальных транзисторах от 0,1 до 0,001 количества носителей заря­ди, покинувших эмиттер). Остальные дырки достигают коллекторного перехода, на который подано обратное напряжение UКБ, и с ускорением перебрасываются в кол­лектор полем перехода П2.

Таким образом, ток Iэ основных носителей, покидаю­щих эмиттер, частично теряется в переходе П1 и базе на рекомбинацию, эти потери составляют ток базы IБ. Остальная его часть достигает коллектора, где рекомбинирует с электронами, поступающими в него из внешней цепи в виде тока iK. Уход дырок из эмиттера восполняет­ся генерацией пар электрон—дырка в эмиттерной области и отводом электронов во внешнюю цепь в виде токаIБ.Расход электронов базы на рекомбинацию компенси­руется их притоком в виде тока IБ.

Токи транзистора, работающего в активном режиме, связаны уравнением Iэ == Iк. + IБ, которое можно перепи­сать в приращениях: ΔIэ = ΔIк + Δ IБ.Таким образом, при появлении переменной составляющей входного тока транзистора (в рассматриваемом случае это ток эмитте­ра) появляется переменная составляющая выходного (коллекторного) тока. Если в цепь коллектора включить резистор, то падение напряжения Uвых на нем окажется значительно больше переменного напряжения UBX вход­ного сигнала, т. е. транзистор усиливает входной сигнал (рисунок 21,а).

В активном режиме транзистор управляется в любой момент процесса усиления, т.е. каждому изменению входного сигнала соответствует изменение входного.

В режиме насыщения (рисунок 21,в) на оба перехода транзистора подается прямое напряжение. При этом в базу инженируется потоки основных носителей эмиттера и коллектора и сопротивление промежутка коллектор – эмиттер транзистора резко уменьшается. Режим насыщения используют в тех случаях, когда необходимо уменьшить почти до нуля сопротивление цепи, в которую включен транзистор.

В режиме отсечки (рисунок 21,г) оба перехода транзистора закрыты, так как на них подаются обратные, напряжения. В этом режиме транзистор обладает большим сопротивлением. Обратные токи эмиттерного IЭбо и коллекторного IКБо переходов малы (особенно крем­ниевых транзисторов).

Рисунок – 21 Схема транзистора.

При включении биполярного транзистора в электри­ческую схему образуется две цепи: управляющая и уп­равляемая. В управляющей цепи действует входной сиг­нал, который обычно подают на эмиттер или базу. В уп­равляемой цепи (коллекторной или эмиттерной) форми­руется выходной сигнал, поступающий затем на вход следующего каскада или в нагрузку. Третий электрод транзистора является общим для входной и выходной цепей.

Широко распространены три схемы включения тран­зисторов: с общей базой общим эмиттерами общим коллектором (рисунок 22). Для ра­счета транзисторных схем используют два семейст­ва вольт — амперных характеристик: входные и выход­ные.

Рисунок – 22 Схемы включения транзисторов с ОБ, ОЭ, ОК.

Входные характеристики транзистора показывают за­висимости тока входного электрода от напряжения меж­ду ним и общим электродом при постоянном напряже­нии на выходном электроде. Для схемы с общей базой (ОБ) это зависи­мость тока эмиттера от напряжения между ним и базой при постоянном напряжении на коллекторе: Iэ = (Uэб) при Uкб = const.

Выходные характеристики транзистора показывают зависимость тока выходного электрода от напряжения между ним и общим электродом. Снимают выходные характеристики для ряда постоянных токов входного электрода. Для схемы с ОБ это зависимости тока кол­лектора от напряжения между ним и базой при постоянных значениях тока эмиттера: Iк= (Uкб) при Iэ = const.

В режиме усиления малых сигналов, когда нелинейностью ВАХ можно пренебречь, транзистор, включенный с ОБ, эквивалентно представляют в виде линейного четырёхполюсника (рисунок 22), входные и выходные параметры которого связаны следующими уравнениями:

Δ Uэб = h11Б ΔIэ + h12БΔUкб;

ΔIк = h21БΔIэ + h22БΔUкб.

Рисунок – 23 Транзистор включенный с ОБ.

Физический смысл h -параметров транзистора состоит в следующем:

Читайте также:  Как украсить шапку стразами и бусинами

h11Б — входное сопротивление в режиме короткого замыкания на выходе;

h12Б — коэффициент внутренней обратной связи в режиме холостого хода на входе;

h21Б — коэффициент передачи тока в режиме корот­кого замыкания на выходе;

h22Б — выходная проводимость транзистора в режиме холостого хода на входе.

Рассчитывают h-параметры для схемы с ОБ по фор­мулам

h11Б=ΔUэб/ΔIэпри Uкб = const; (3)

h12Б =ΔUэб/ΔUкбпри Iэ= const; (4)

h21Б=ΔIк/ΔIэпри Uкб = const; (5)

h22Б =ΔIк/ΔUкбпри Iэ= const. (6)

Аналитический расчет h-параметров сложен и неточен. Намного проще их получают измерением или по ВАХ.

Для определения h12Б на входной характеристике, соответствующей среднему значению коллекторного на­пряжения, обозначают рабочую точку А (р. y) транзис­тора (рисунок 23), которая задается средними значения­ми входного тока Iэpyи входного напряженияUэбpy. Через рабочую точку А (р. y) проводят касательную и строят треугольник BCD. Затем, используя формулу (3), находят

H11Б=BD/CD= ΔUэб /ΔIэ

Для определения h12Б необходимо построить две вход­ные характеристики для двух значений напряжения на выходном электроде (рисунок 23). Через рабочую точку А (р. т) проводят линию Iэ = const, что соответствует холостому ходу на входе транзистора по переменному току. Точки пересечения характеристик и этой линии проецируют на ось Uэб и определяют ΔUэБ. Затем, ис­пользуют формулу (4), находят h12Б, приняв ΔUкб = Uкб2-Uкб1.

Для определения h21Б семейство выходных характе­ристик в области рабочей точки пересекают линией Uкб = const, что соответствует короткому замыканию по переменному току на выходе транзистора (рисунок 23). Затем по формуле (5) находят h21Б, графически опреде­лив Δ/к ивычисливΔIэ= Iэ2— Iэ1.

Для определения h22Б(рисунок 23) снимают выходную характеристику для тока эмиттера Iэpy в рабочей точке, о затем находят ΔIки ΔUкби по формуле (6) рассчитывают h22Б.

Рисунок – 23 Схема h параметров транзистора с ОБ.

Последний тип схемы усилителя на биполярном транзисторе (рисунок ниже), который мы должны изучить, это схема с общей базой. Эта конфигурация сложнее двух предыдущих и менее распространена из-за своих странных рабочих характеристик.

Усилитель с общей базой (стрелками показаны направления движения потоков электронов)

Она называется схемой с общей базой, поскольку (игнорируя источники питания постоянного напряжения) источник сигнала и нагрузка делят между собой вывод базы как общую точку (рисунок ниже).

Усилитель с общей базой: вход между эмиттером и базой, выход между коллектором и базой

Возможно, наиболее яркой характеристикой этого типа включения транзистора является то, что источник входного сигнала обеспечивать полный ток эмиттера транзистора, о чём свидетельствуют толстые стрелки на первой иллюстрации. Как известно, ток эмиттера больше, чем любой другой ток в транзисторе, так как является суммой токов базы и коллектора. В последних двух типах усилительных каскадов источник сигнала был подключен к выводу базы транзистора, таким образом, работая на минимально возможном токе.

Поскольку в этой схеме входной ток превышает все другие токи, включая выходной ток, коэффициент усиления по току на самом деле меньше 1 (обратите внимание, как Rнагр подключен к коллектору, тем самым пропуская через себя немного меньший ток, чем источник сигнала). Другими словами, эта схема ослабляет ток, а не усиливает его. В схемах с общим эмиттером и общим коллектором из всех параметров транзистора с усилением тесно был связан β. В схеме с общей базой нам нужен другой основной параметр транзистора: отношение тока коллектора к току эмиттера, который представляет собой дробное число, всегда меньше 1. Это дробное значение для любого транзистора называется коэффициентом α (альфа).

Поскольку данная схема, очевидно, не может повысить ток сигнала, было бы разумным ожидать, что она увеличит напряжение сигнала. Моделирование SPICE схемы на рисунке ниже подтвердит это предположение.

Схема с общей базой для SPICE анализа по постоянному току Усилитель с общей базой: график зависимости выходного напряжения от входного напряжения

Обратите внимание, что выходное напряжение изменяется практически от нуля (отсечка) до 15,75 вольт (насыщение), при этом входное напряжение меняется от 0,6 вольта до 1,2 вольта. Фактически, график выходного напряжения не показывает роста примерно до 0,7 вольта на входе и прекращает расти (выпрямляется) примерно при 1,12 вольта на входе. Это показывает довольно большой коэффициент усиления по напряжению с интервалом выходных напряжений 15,75 вольт и интервалом входных напряжений всего 0,42 вольт: коэффициент усиления составляет 37,5 раз, или 31,48 дБ. Также обратите внимание на то, как при насыщении выходное напряжение (измеренное на Rнагр) на самом деле превышает напряжение источника питания (15 вольт) из-за эффекта последовательного добавления источника входного напряжения.

Второй SPICE анализ модифицированной схемы (рисунок ниже) с источником сигнала переменного напряжения (и постоянным напряжением смещения) говорит о том же: о высоком коэффициенте усиления по напряжению.

Схема с общей базой для SPICE анализа по переменному току

Как вы можете видеть, входной и выходной сигналы на рисунке ниже синфазны друг с другом. Это говорит о том, что усилитель с общей базой является неинвертирующим.

Усилительный каскад с общей базой: осциллограммы входного и выходного напряжений

SPICE анализ по переменному току в таблице ниже на одной частоте 2 кГц предоставляет данные о входном и выходном напряжениях для расчета коэффициента усиления.

Читайте также:  Как повесить тяжелое зеркало на гипсокартон

AC анализ схемы с общей базой на частоте 2 кГц: список соединений и выходные данные

Значения напряжений из второго анализа (таблица выше) показывают коэффициент усиления по напряжению 42,74 (4,274 В / 0.1 В), или 32,617 дБ:

Вот еще один вид схемы с общей базой (рисунок ниже), на которой видны фазы и смещения по постоянному напряжению для разны сигналов в только что промоделированной схеме.

Соотношения фаз и смещений в усилителе на NPN транзисторе с общей базой

То же самое для PNP транзистора (рисунок ниже).

Соотношения фаз и смещений в усилителе на PNP транзисторе с общей базой

Для схемы усилителя с общей базой определить заранее коэффициент усиления по напряжению довольно сложно, что связано с аппроксимацией поведения транзистора, которое трудно измерить напрямую. В отличие от других типов усилительных схема, где коэффициент усиления по напряжению либо устанавливается соотношением двух резисторов (в схеме с общим эмиттером), либо фиксировался на неизменном значении (схема с общим коллектором), коэффициент усиления по напряжению в схеме с общей базой зависит во многом от величины напряжения смещения входного сигнала. Как выясняется, внутреннее сопротивление транзистора между эмиттером и базой играет важную роль в определении коэффициента усиления по напряжению, и это сопротивление изменяется в зависимости от величины тока, протекающего через эмиттер.

Хотя это явление трудно объяснить, его довольно легко продемонстрировать с помощью компьютерного моделирования. Я собираюсь запустить несколько SPICE моделирований схемы усилителя с общей базой (предыдущий рисунок), слегка изменив постоянное напряжение смещения ( vbias в коде ниже), оставив теми же амплитуду входного сигнала переменного напряжения и все остальные параметры схемы. Когда в разных моделированиях коэффициент усиления по напряжению будет меняться, это будет заметно по разным амплитудам выходного напряжения.

Несмотря на то, что эти анализы будут проводиться в режиме “ transfer function ” (коэффициент передачи), каждый из них был сначала проверен в режиме временного анализа (построен график напряжения в зависимости от времени), чтобы гарантировать, что вся синусоида сигнала была воспроизведена точно, а не «обрезана» из-за неправильного смещения. Смотрите " *.tran 0.02m 0.78m " в коде ниже, это «закомментирование» оператора временного анализа. Вычисление коэффициента усиления не может основываться на сигналах искаженной формы. SPICE может для нас рассчитать коэффициент усиления небольшого сигнала постоянного напряжения с помощью оператора " *.tf v(4) vin ". Выходное напряжение – это v(4) , а входное напряжение – это vin .

Командная строка spice -b filename.cir благодаря оператору .tf выводит следующие данные: transfer_function (коэффициент передачи), output_impedance (выходное сопротивление) и input_impedance (входное сопротивление). Сокращенный вывод команды, запущенной для напряжений смещения vbias 0.85, 0.90, 0.95, 1.00 вольт, приведен ниже

Вывод SPICE: коэффициент передачи схемы с общей базой:

Тенденция в списке выше должна быть очевидна. С увеличением постоянного напряжения смещения также увеличивается и коэффициент усиления по напряжению ( transfer_function ). Мы видим, что коэффициент усиления по напряжению увеличивается, потому что каждео последующее моделирование ( vbias = 0.85, 0.8753, 0.90, 0.95, 1.00 В) дает больший коэффициент усиления ( transfer_function = 37.6, 39.4 40.8, 42.7, 44.0) соответственно. Эти изменения во многом обусловлены незначительными изменениями напряжения смещения.

Последние три строки в списке соединений выше (справа) показывают коэффициент усиления по току I(v1)/Iin = 0,99 (последние две строки выглядят неправильными). Это имеет смысл для β=100; α= β/(β+1), α=0.99=100/(100-1). Это сочетание низкого коэффициента усиления по току (всегда меньше 1) и несколько непредсказуемого коэффициента усиления по напряжению говорит не в пользу схемы с общей базой, оставляя ей лишь несколько вариантов практических применений.

Эти несколько приложений включают в себя радиочастотные усилители. База, посаженная на корпус, помогает защитить входной сигнал на эмиттере от входного сигнала на коллекторе, предотвращая нестабильность в радиочастотных усилителях. Схема с общей базой может использоваться на более высоких частотах, чем схемы с общим эмиттером и общим коллектором. Смотрите раздел «Радиочастотный усилитель мощности 750 мВт класса C с общей базой» в главе 9. Более сложную схему можно увидеть в разделе «Усилитель малых сигналов класса A с общей базой и высоким коэффициентом усиления» в главе 9.

ТЕМА 4. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

4.1 Устройство и принцип действия

Биполярный транзистор – это полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и пригодный для усиления мощности.

Выпускаемые в настоящее время биполярные транзисторы можно классифицировать по следующим признакам:

— по материалу: германиевые и кремниевые;

— по виду проводимости областей: типа р-n-р и n-p-n;

— по мощности: малой (Рмах £ 0,3Вт), средней (Рмах £ 1,5Вт) и большой мощности (Рмах > 1,5Вт);

— по частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В биполярных транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок (или основными и неосновными). Отсюда их название – биполярные.

В настоящее время изготавливаются и применяются исключительно транзисторы с плоскостными р-n- переходами.

Устройство плоскостного биполярного транзистора показано схематично на рис. 4.1.

Он представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n-р-n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р-n-р имеют среднюю область с электронной, а крайние области с дырочной электропроводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом в транзисторе имеются два р-n- перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Площадь эмиттерного перехода меньше площади коллекторного перехода.

Эмиттером называется область транзистора назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстракция носителей заряда из базы. Базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а их концентрация в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера на несколько порядков выше проводимости базы, а проводимость коллектора несколько меньше проводимости эмиттера.

От базы, эмиттера и коллектора сделаны выводы. В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Рассмотрим принцип действия транзистора на примере транзистора р-n-р –типа, включенного по схеме с общей базой (рис. 4.2).

Рисунок 4.2 – Принцип действия биполярного транзистора (р-n-р- типа)

Внешние напряжения двух источников питания ЕЭ и Ек подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении (прямое напряжение), а коллекторного перехода П2 – в обратном направлении (обратное напряжение).

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток Iко (единицы микроампер). Этот ток возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Ек, база-коллектор, −Ек. Величина обратного тока коллектора не зависит от напряжения на коллекторе, но зависит от температуры полупроводника.

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование (впрыскивание) дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Ек. Дырки, рекомбинировавшие с электронами в базе, создают ток базы IБ.

Под действием обратного напряжения Ек потенциальный барьер коллекторного перехода повышается, толщина перехода П2 увеличивается. Но потенциальный барьер коллекторного перехода не создает препятствия для прохождения через него дырок. Вошедшие в область коллекторного перехода дырки попадают в сильное ускоряющее поле, созданное на переходе коллекторным напряжением, и экстрагируются (втягиваются) коллектором, создавая коллекторный ток Iк. Коллекторный ток протекает по цепи: +Ек, база-коллектор, -Ек.

Таким образом, в транзисторе протекает три тока: ток эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Следовательно, ток базы равен разности токов эмиттера и коллектора: IБ = IЭ − IК.

Физические процессы в транзисторе типа n-р-n протекают аналогично процессам в транзисторе типа р-n-р.

Полный ток эмиттера IЭ определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток Iк. Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы IБ. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. IЭ = IБ + Iк.

Ток эмиттера является входным током, ток коллектора – выходным. Выходной ток составляет часть входного, т.е.

(4.1)

где a- коэффициент передачи тока для схемы ОБ;

Поскольку выходной ток меньше входного, то коэффициент a 0.

Входные характеристики для различных UКЭ, превышающих 1В, располагаются очень близко друг к другу. Поэтому расчет входных токов и напряжений можно приближенно делать по входной характеристике при UКЭ > 0, взятой из справочника.

На эту кривую переносятся точки А, То и Б выходной рабочей характеристики, и получаются точки А1, Т1 и Б1 (рис. 4.8, б). Рабочая точка Т1 определяет постоянное напряжение базы UБЭП и постоянной ток базы IБП.

Сопротивление резистора RБ (обеспечивает работу транзистора в режиме покоя), через который от источника ЕК будет подаваться постоянное напряжение на базу:

(4.13)

В активном (усилительном) режиме точка покоя транзистора То находится примерно посередине участка линии нагрузки АБ, а рабочая точка не выходит за пределы участка АБ.

Название: Биполярные транзисторы
Раздел: Рефераты по коммуникации и связи
Тип: учебное пособие Добавлен 02:45:05 22 ноября 2008 Похожие работы
Просмотров: 11309 Комментариев: 14 Оценило: 9 человек Средний балл: 5 Оценка: 5 Скачать
Ссылка на основную публикацию
Adblock detector