Мощность при поступательном движении

Мощность при поступательном движении

Иметь представление о мощности при прямолинейном и кри­волинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.

Знать зависимости для определения мощности при поступа­тельном и вращательном движениях, КПД.

Уметь рассчитать мощность с учетом потерь на трение и сил инерции.

Мощность

Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.

Мощность — работа, выполненная в единицу времени:

Единицы измерения мощности: ватты, киловатты,

Мощность при поступательном движении (рис. 16.1)

Учитывая, что S/t = vcp, полу­чим

где F — модуль силы, действующей на тело; vср — средняя скорость движения тела.

Средняя мощность при поступательном движении равна про­изведению модуля силы на среднюю скорость перемещения и на ко­синус угла между направлениями силы и скорости.

Мощность при вращении (рис. 16.2)

Тело движется по дуге радиуса r из точки М1 в точку M2

где Мвр — вращающий момент.

получим

где ωcp — средняя угловая скорость.

Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

Если при выполнении работы усилие машины и скорость дви­жения меняются, можно определить мощность в любой момент вре­мени, зная значения усилия и скорости в данный момент.

Коэффициент полезного действия

Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы со­вершает еще и дополнительную работу.

Отношение полезной работы к полной работе или полезной мощ­ности ко всей затраченной мощности называется коэффициентом по­лезного действия (КПД):

Полезная работа (мощность) расходуется на движение с задан­ной скоростью и определяется по формулам:

Затраченная мощность больше полезной на величину мощности, идущей на преодоление трения в звеньях машины, на утечки и тому подобные потери.

Чем выше КПД, тем совершеннее машина.

Примеры решения задач

Пример 1. Определить потребную мощность мотора лебедки для подъема груза весом 3 кН на высоту 10 м за 2,5 с (рис. 16.3). КПД механизма лебедки 0,75.

Решение

1. Мощность мотора используется на подъем груза с заданной скоростью и преодоление вредных сопротивлений механизма лебедки.

Полезная мощность определяется по формуле

Р = Fv cos α.

В данном случае α = 0; груз движется поступательно.

2. Скорость подъема груза

3. Необходимое усилие равно весу груза (равномерный подъем).

6. Полезная мощность Р = 3000 • 4 = 12 000 Вт.

7. Полная мощность. затрачиваемая мотором,

Пример 2. Судно движется со скоростью 56 км/ч (рис. 16.4). Двигатель развивает мощность 1200 кВт. Определить силу сопротивления во­ды движению судна. КПД машины 0,4.

Решение

1. Определяем полезную мощность, используемую на движение с заданной скоростью:

2. По формуле для полезной мощности можно определить движущую силу судна с учетом условия α = 0. При равномерном дви­жении движущая сила равна силе сопротивления воды:

3. Скорость движения судна v = 36 * 1000/3600 = 10 м/с

4. Сила сопротивления воды

Сила сопротивления воды движению судна

Пример 3. Точильный камень прижимается к обрабатываемой детали с силой 1,5 кН (рис. 16.5). Какая мощ­ность затрачивается на обработку детали, если коэффициент трения материала камня о деталь 0,28; деталь вращается со скоростью 100 об/мин, диаметр детали 60 мм.

Читайте также:  Как можно найти котенка

Решение

1. Резание осуществляется за счет трения между точильным камнем и обрабатываемой деталью:

Пример 4. Для того чтобы поднять волоком по наклонной плоскости на высоту H = 10 м станину массой т == 500 кг, воспользовались электрической лебедкой (рис. 1.64). Вращающий момент на выходном барабане лебедки М = 250 Н-м. Ба­рабан равномерно вращается с частотой п = 30 об/мин. Для подъема станины лебедка ра­ботала в течение t = 2 мин. Определить коэффициент по­лезного действия наклонной плоскости.

Решение

где Ап.с. — полезная работа; Адв — работа движущих сил.

В рассматриваемом примере полезная работа — работа силы тяжести

Вычислим работу движущих сил, т. е. работу вра­щающего момента на выходном валу лебедки:

Угол поворота барабана лебедки определяется по уравнению равномерного вращения:

Подставив в выражение работы движущих сил число­вые значения вращающего момента М и угла поворота φ, получим:

Коэффициент полезного действия наклонной плоскости составит

Контрольные вопросы и задания

1. Запишите формулы для расчета работы при поступательном и вращательном движениях.

2. Вагон массой 1000 кг перемещают по горизонтальному пути на 5 м, коэффициент трения 0,15. Определите работу силы тяжести.

3. Колодочным тормозом останавливают барабан после отклю­чения двигателя (рис. 16.6). Определите работу торможения за 3 обо­рота, если сила прижатия колодок к барабану 1 кН, коэффициент трения 0,3.

4. Натяжение ветвей ременной передачи S1 = 700 Н, S2 = 300 Н (рис. 16.7). Определите вращающий момент передачи.

5. Запишите формулы для расчета мощности при поступатель­ном и вращательном движениях.

6. Определите мощность, необходимую для подъема груза весом 0,5 кН на высоту 10 м за 1 мин.

7. Определите общий КПД механизма, если при мощности дви­гателя 12,5 кВт и общей силе сопротивления движению 2 кН ско­рость движения 5 м/с.

8. Ответьте на вопросы тестового задания.

Тема 1.14. Динамика. Работа и мощность

ЛЕКЦИЯ 17

Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы

Для характеристики работоспособности и быстроты совершения работы введено понятие мощности.

Мощность — работа, выполненная в единицу времени:

Единицы измерения мощности: ватты, киловатты,

Мощность при поступательном движении (рис. 16.1)

Учитывая, что S/t = vcp, полу­чим

где F — модуль силы, действующей на тело; vср — средняя скорость движения тела.

Средняя мощность при поступательном движении равна про­изведению модуля силы на среднюю скорость перемещения и на ко­синус угла между направлениями силы и скорости.

Мощность при вращении (рис. 16.2)

Тело движется по дуге радиуса r из точки М1 в точку M2

где Мвр — вращающий момент.

получим

где ωcp — средняя угловая скорость.

Мощность силы при вращении равна произведению вращающего момента на среднюю угловую скорость.

Если при выполнении работы усилие машины и скорость дви­жения меняются, можно определить мощность в любой момент вре­мени, зная значения усилия и скорости в данный момент.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 11108 — | 8260 — или читать все.

Смотрите также решения задач по теме «Работа и мощность» в онлайн решебнике Мещерского.

Читайте также:  Рейтинг мебельных фабрик мягкой мебели

В этой главе рассмотрены задачи на определение работы, совершаемой постоянной силой, и развиваемой мощности при поступательном и вращательном движении тел (Е. М. Никитин, § 81–87).

§ 44. Работа и мощность при поступательном движении

Работа постоянной силы P на прямолинейном участке пути s, пройденном точкой приложения силы, определяется по формуле
(1) A = Ps cos α,
где α – угол между направлением действия силы и направлением перемещения.

При α = 90°
cos α = cos 90° = 0 и A = 0,
т. е. работа силы, действующей перпендикулярно к направлению перемещения, равна нулю.

Если направление действия силы совпадает с направлением перемещения, то α = 0, поэтому cos α = cos 0 = 1 и формула (1) упрощается:
(1′) A = Ps.

На точку или на тело обычно действует не одна сила, а несколько, поэтому при решении задач целесообразно использовать теорему о работе равнодействующей системы сил (Е. М. Никитин, § 83):
(2) AR = ∑ Ai,
т. е. работа равнодействующей какой-либо системы сил на некотором пути равна алгебраической сумме работ всех сил этой системы на том же пути.

В частном случае, когда система сил уравновешена (тело движется равномерно и прямолинейно), равнодействующая системы сил равна нулю и, следовательно, AR=0. Поэтому при равномерном и прямолинейном движении точки или тела уравнение (2) принимает вид
(2′) ∑ Ai = 0,
т. е. алгебраическая сумма работ уравновешенной системы сил на некотором пути равна нулю.

При этом силы, работа которых положительна, называются движущими, а силы, работа которых отрицательна, называются силами сопротивления. Например, при движении тела вниз – сила тяжести – движущая сила и ее работа положительна, а при движении тела вверх его сила тяжести является силой сопротивления и работа силы тяжести при этом отрицательна.

При решении задач в случаях, когда неизвестна сила Р, работу которой нужно определить, можно рекомендовать два приема (метода).

1. При помощи сил, заданных в условии задачи, определить силу P, а затем по формуле (1) или (1′) вычислить ее работу.

2. Не определяя непосредственно силы P, определить Ap – работу требуемой силы при помощи формул (2) и (2′), выражающих теорему о работе равнодействующей.

Мощность, развиваемая при работе постоянной силы, определяется по формуле
(3) N = A/t или N = (Ps cos α)/t.

Если при определении работы силы Р скорость движения точки v=s/t остается постоянной, то
(3′) N = Pv cos α.

Если же скорость движения точки изменяется, то s/t = vср – средняя скорость и тогда формула (2′) выпажает среднюю мощность
Nср = Pvср cos α.

Коэффициент полезного действия (к. п. д.) при совершении работы можно определить как отношение работ
(4) η = Aпол/A,
где Aпол – полезная работа; A – вся произведенная работа, или как отношение соответствующих мощностей:
(4′) η = Nпол/N.

Единицей работы в СИ служит 1 джоуль (Дж) = 1 Н * 1 м.

Единицей мощности в СИ служит 1 ватт (Вт) = 1 Дж / 1 сек.

Популярной внесистемной единицей мощности является лошадиная сила (л. с.):
1000 Вт = 1,36 л. с. или 1 л. с. = 736 Вт.

Для перехода между ваттами и лошадиными силами следует пользоваться формулами
N (кВт) = 1,36 N (л. с.)
N (л. с.) = 0,736 N (кВт).

Читайте также:  Краска по дереву в интерьере

§ 45. Работа и мощность при вращательном движении

При вращательном движении тела движущим фактором является пара сил. Рассмотрим диск 1, могущий свободно вращаться вокруг оси 2 (рис. 259). Если к точке A на ободе диска приложить силу P (направим ее вдоль касательной к боковой поверхности диска; направленная таким образом сила называется окружным усилием), то диск станет вращаться. Вращение диска обусловлено появлением пары сил. Сила P, действуя на диск, прижимает его в точке O к оси (сила Pдавл на рис. 259, приложенная к оси 2) и возникает реакция оси (сила Pркц на рис. 259), приложенная так же, как и сила P, к диску. Так как все эти силы численно равны между собой и линии их действия параллельны, то силы P и Pркц образуют пару сил, которая и приводит диск во вращение.

Как известно, вращающее действие пары сил измеряется ее моментом, но момент пары сил равен произведению модуля любой из сил на плечо пары, поэтому вращающий момент
Mвр = Mпары = MOP = P*OA.

Единицей момента пары сил, а также момента силы относительно точки или относительно оси является 1 Н*м (ньютон-метр) в СИ и 1 кГ*м (килограмм-сила-метр) в системе МКГСС. Но при этом не следует смешивать эти единицы с единицами работы (1 Н*м=1 Дж или 1 кГ*м), имеющими ту же размерность.

Работу при вращательном движении производят пары сил.

Величина работы пары сил измеряется произведением момента пары (вращающего момента) на угол поворота, выраженный в радианах:
(1) A = Mврφ.

Таким образом, чтобы получить единицу работы, например, 1 Дж=1 Н*м, необходимо единицу момента 1 Н*м умножить на 1 рад. Но так как радиан – безразмерная величина
[радиан] = [длина дуги/радиус] = [м/м] = [1],
то
[Дж] = [Н*м] * [1] = [Н*м].

Мощность при вращательном движении
(2) N = A/t = Mврφ/t.

Если тело вращается с постоянной угловой скоростью, то, заменив в формуле (2) φ/t = ω, получим
(2′) N = Mврω.

Если мощность того или иного двигателя – величина постоянная, то
(3) Mвр = N/ω,
т. е. вращающий момент двигателя обратно пропорционален угловой скорости его вала.

Это означает, что использование мощности двигателя при различных угловых скоростях позволяет изменять создаваемый им вращающий момент. Используя мощность двигателя при малой угловой скорости, можно получить большой вращающий момент.

Так как угловая скорость вращающейся части двигателя (ротора электродвигателя, коленчатого вала двигателя внутреннего сгорания и т. п.) при его работе практически не изменяется, то между двигателем и рабочей машиной устанавливается какой-либо механизм (редуктор, коробка скоростей и т. п.), могущий передавать мощность двигателя при различных угловых скоростях.

Поэтому формула (3), выражающая зависимость вращающего момента от передаваемой мощности и угловой скорости, имеет очень важное значение.

Используя при решении задач эту зависимость, необходимо иметь в виду следующее. Формула (3) применяется для решения задач, если мощность N задана в ваттах, а угловая скорость ω – в рад/сек (размерность [1/сек]), тогда вращающий момент Mвр получится в Н*м.

Ссылка на основную публикацию
Мотокоса хускварна 128r цена
Нашли дешевле? Получите скидку! Мы получили ваше сообщение и перезвоним вам Мы получили Ваше сообщение и обязательно свяжемся с Вами....
Монтаж системы отопления металлопластиковыми трубами
Промышленность не так давно начала выпускать металлопластик. Трубы из этого материала стали популярными в сфере отопления частных и многоквартирных домов....
Монтаж сушилки потолочной на балконе
Конструкции для сушки белья продаются повсеместно. В комплекте с потолочной сушилкой лиана инструкция по установке, как правило, присутствует. Но далеко...
Мотокультиватор huter gmc 6 5 отзывы
Перед тем как покупать Huter GMC-6.5 хочется прочитать о нём отзывы владельцев, тех людей, кто уже купил и пользуется товаром...
Adblock detector