Энергетическая характеристика электрического поля это

Энергетическая характеристика электрического поля это

(Потенциал электрического поля)

Работа сил электростатического поля.

Элементарная работа как скалярное произведение

dA= =F . cosα . ds

dA= =F . dr

так как dr=cosα . ds

Эта работа определяется только начальным и конечным положением пробного заряда q ,т.е. электрическое поле является потенциальным, а кулоновские силы — потенциальными или консервативными (как гравитационные силы). Тогда работа A1→2 перемещения заряда q из точки 1 до точки 2 равна убыли потенциальной энергии Wp: . Сравнивая с А12 для выражения потенциальной энергии получаем: .

Не зависит от значения пробного заряда q и служит энергетической характеристикой электрического поля (потенциал электрического поля).

φ = работе, совершаемой полем при перемещении единичного, положительного заряда из этой точки поля до бесконечности (∞).

Единица измерения потенциала [φ] =Вольт (В); 1В= ;

Т.е. Вольт является потенциалом такой точки, при перемещении из которой заряд +1 Кл на бесконечность, совершается 1 Дж работа.

Теперь уже можно найти, что

В атомной физике, астрофизике и химии за единицу энергии обычно употребляется электрон-вольт (эв).За 1эв принимается такое количество энергии, которая приобретает электрон пройдя разность потенциалов Δφ=1в.

1 эв=1,6 . 10 -19 Кл . 1 в=1,6 . 10 -19 Дж

Для сравнения; энергия теплового движения молекул при комнатной температуре (Т≈300К 0 )

Таким образом, = . Сравнивая с А12 или А1→2 и разделяя на q

=φ12 или А=q12).

Если q заряд перемещается из точки с потенциалом φ1 в точку с потенциалом φ2, то силы поля совершают такую работу.

Иными словами, разность потенциалов двух точек поля равна работе сил поля по перемещению единичного, положительного заряда из одной точки в другую.

Из Wp (r→∞)=0 вытекает, что и φ(∞)=0, но это несущественно, т.к. важна Δφ :в формулах, обычно, присутствует именно разность потенциалов.

Знак потенциала определяется знаком заряда, создающего поля, таким образом, потенциал поля точечного заряда (или шара с однородным распределением зарядов при r>R, где R -радиус шара):

,

где (-) относится к случаю отрицательного заряда а (+) к случаю положительного заряда.

Если q … +φn=

Потенциальная энергия отталкивания одноименных зарядов > 0 и возрастает при сближении зарядов. Потенциальная энергия разноименных зарядов отрицательна и возрастает до нуля при удалении одного из зарядов в бесконечность.

Работа электрических сил отталкивания одноименных зарядов положительна, если заряды удаляют друг от друга, и отрицательна, если происходит сближение зарядов. Иными словами, работа электростатических сил притяжения разноименных зарядов положительна, если заряды сближаются и отрицательна, если они удаляются друг от друга.

Так как эти потенциальные кривые не имеют минимума (потенциальной ямы), то эта система не может находиться в устойчивом равновесии, т.е. она неустойчива.

Всякая конфигурация покоящихся электрических зарядов неустойчива, если между ними действуют только кулоновские силы (теорема Ирншоу).

Или иными словами, устойчивое статическое распределение электрических зарядов, находящихся на конечных расстояниях друг от друга, невозможно.

Надо отметить, что равновесие между многими разноименными зарядами может осуществляться при определенном их взаиморасположении и определенном соотношении между их величинами. Но это равновесие не будет устойчивым.

Механический аналог устойчивого и неустойчивого равновесия шарик в гравитационном поле.

Пример неустойчивого равновесия

Противовес электрических сил в моделях атомов, молекул, ионов, в кристаллах существуют непрерывное движение и колебание заряженных частиц.

Устойчивое равновесие заряженных частиц в атомах, молекулах, ионах и т. п. системах достигается благодаря динамическому характеру их взаимодействии, т.е. они не являются статическими системами. Например, динамический (колебательный) характер устойчивости в молекулах приводит к одновременным действием межмолекулярных сил притяжения и отталкивания, причем зависимость сил притяжения и сил отталкивания от расстояния между заряженными частицами выражается различными и отличающимися от закона Кулона закономерностями.

Поверхность, во всех точках которой потенциал одинаков, называется эквипотенциальной поверхностью: перемещение заряда вдоль этой поверхности не сопровождается работой, так как при φ=const, Δφ=0.

А это значит, что в каждой точке силовые линии электрического поля перпендикулярны эквипотенциальным поверхностям.

Свойства электростатических полей:

1. В каждой точке эквипотенциальной поверхности напряженность перпендикулярна к этой поверхности и направлена в сторону убывания потенциала.

2. Работа по перемещению электрического заряда по одной и той же эквипотенциальной поверхности равняется 0.

Внутри проводника =0, а все точки объема проводника имеют одинаковый потенциал, совпадающий с потенциалом поверхности проводника.

Таким образом, электрическое поле графически можно изображать не только при помощи силовых линий, но и при помощи эквипотенциальных поверхностей: они обычно проводят так, чтобы Δφ между любыми двумя соседними эквипотенциальными поверхностями были одинаковыми.

Связь между напряженностью и потенциалом электрического поля

По сущности, эта связь между силовыми и энергетическими характеристиками электрического поля.

На рисунке нанесены силовые линии (сплошные стрелки) и проекции эквипотенциальных поверхностей (пунктирные линии) электростатического поля. Элементарная работа, совершаемая полем при передвижении заряда q из точки 1 в точку 2 , можно определить двумя способами:

учитывая, что dℓ . cosα=dn

Модуль напряженности поля (Е) в данной точке определяется быстротой падения потенциала вдоль линии напряженности.

Знак (-) показывает, что вектор направлен в сторону убывания потенциала.

,

Градиент физической величины называется ее изменение, приходящееся на единицу расстояния в направлении наибольшего возрастания: .

Понятие градиента применимо к любой физической величине (скорости, плотности, температуре, давлению и т.д.), если только она имеет пространственное распределение. Например, известно, что средний градиент температуры земной коры (геотермический градиент) направлен к центру Земли и составляет около 0,003 К/м. Это означает, что температура земной коры возрастает в среднем на 3 0 С на каждые 100м глубины.

В общем случае , который обозначается также оператором Гамильтона или «набла»- оператором ( U).

Таким образом, =−grand φ .

Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

Электрическим полем называют вид материи, посредством которой происходит взаимодействие электрических зарядов. Поле неподвижных зарядов называется электростатическим.

Свойства электрического поля:

• порождается электрическим зарядом;

• обнаруживается по действию на заряд;

• действует на заряды с некоторой силой.

Точечный заряд – модель заряженного тела, размерами которого можно пренебречь в условиях

данной конкретной задачи ввиду малости размеров тела по сравнению с расстоянием от него до

точки определения поля.

Пробный заряд – точечный заряд, который вносится в данное электростатическое поле для измерения его характеристик. Этот заряд должен быть достаточно мал, чтобы своим воздействием не нарушить положение зарядов – источников измеряемого поля и тем

самым не изменить создаваемое ими поле.

Электрический диполь – система двух разноименных по знаку и одинаковых по величине точечных зарядов, находящихся на небольшом расстоянии один от другого. Вектор l, проведенный от отрицательного заряда к положительному, называется плечом диполя. Вектор

Читайте также:  Стена из стеклянных кирпичей

p = q*l называется электрическим моментом диполя.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F/q; [E] = [ 1 Н/Кл ] = [1 В/м ]

Графически электрическое поле изображают с помощью силовых линий –это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности.

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:

2. энергетическая характеристика – потенциал j — это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = DЕр/q. [j] = [1 Дж/Кл ] =[1 В ].

U = j1 — j2 — разность потенциалов (напряжение)

Физический смысл напряжения: U = j1 — j2 = А/q — — напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

3. Индукция электрического поля. Напряженность электрического поля является силовой характеристикой поля и определяется не только зарядами, создающими поле, но зависит и от свойств среды, в которой находятся эти заряды.

Часто бывает удобно исследовать электрическое поле, рассматривая только заряды и их расположение в пространстве, не принимая во внимание свойств окружающей среды. Для этой цели используется векторная величина, которая называется электрической индукцией или электрическим смещением. Вектор электрической индукции D в однородной изотропной среде связан с вектором напряженности Е соотношением

.

Единицей измерения индукции электрического поля служит 1 Кл/ м 2 . Направление вектора электрического смещения совпадает с вектором Е. Графическое изображение электрического поля можно построить с помощью линий электрической индукции по тем же правилам, что и для линий напряженности

Графическое изображение электрических полей.

Электрические поля можно изображать графически: при помощи силовых линий или эквипотенциальных поверхностей (которые взаимно перпендикулярны между собой в каждой точке поля.

Силовыми линиями (линиями напряженности) называются линии, касательные в каждой точке к которым совпадают с направлением вектора напряженности в данной точке.

Эквипотенциальные поверхности – это поверхности равного потенциала.

Закон взаимодействия неподвижных точечных электрических зарядов установлен в 1785 г. Ш. Кулоном с помощью крутильных весов, подобных тем, которые (см. § 22) использовались Г. Кавендишем для определения гравитационной постоянной (ранее этот закон был открыт Г. Кавендишем, однако его работа оставалась неизвестной более 100 лет). Точечным называется заряд, сосредоточенный на теле, линейные раз­меры которого пренебрежимо малы по сравнению с расстоянием до других заряжен­ных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материаль­ной точки, является физической абстракцией.

Закон Кулона: сила взаимодействия F между двумя неподвижными точечными зарядами, находящимися в вакууме, пропорциональна зарядам Q1 и Q2 и обратно пропорциональна квадрату расстояния r между ними:

где k коэффициент пропорциональности, зависящий от выбора системы единиц.

Сила F направлена по прямой, соединяющей взаимодействующие заряды, т. е. является центральной, и соответствует притяжению (F 0) в случае одноименных зарядов. Эта сила называется кулоновской силой. В векторной форме закон Кулона имеет вид

(78.1)

В СИ коэффициент пропорциональности равен

Тогда закон Кулона запишется в окончательном виде:

1. Понятие об электрическом поле. Силовая и энергетическая характеристики электрического поля

Электрическое поле – это вид материи, образующийся вокруг заряженных тел, посредством которого они взаимодействуют друг с другом.

Сила взаимодействия двух точечных зарядов определяется законом Кулона: F = k·q1·q2/r 2 . При этом если заряженные тела имеют одинаковые заряды, то они отталкиваются друг от друга, а разноимённые – притягиваются. Заряженные тела взаимодействуют друг с другом посредством их электрических полей.

Выделяют следующие характеристики электрического поля:

1. силовая характеристика – напряжённость электрического поля – это сила, которая действует на единицу заряда, помещённого в данное электрическое поле: E = F/q . Измеряется в [В/м]

Если определённый точечный заряд Q образует электрическое поле, то напряжённость этого поля в точке, находящейся на расстоянии r от заряда вычисляется по формуле: E = Q/(4πεεr 2 ) где Q– заряд, образующий данное электрическое поле; ε = 8,84*10 -12 Ф/м- электрическая постоянная; ε- электрическая проницаемость среды, в которой образуется поле; r -расстояние от точечного заряда до точки, в которой исследуется напряжённость.

За направление напряжённости принимают направление силы, действующей на положительный заряд.

Величина напряжённости электрического поля графически изображается в виде силовых линий – тех линий, направление касательных к которым в любой точке совпадают с направлением напряжённости электрического поля. Чем больше линий – тем больше напряжённость.

2. энергетическая характеристика электрического поля – потенциал.


В каждой точке электрического поля на внесённый в это поле заряд действует определённая сила. При перемещении заряда в электрическом поле будет совершаться работа. При этом каждая точка электрического поля будет характеризоваться потенциалом.

Потенциал поля в данной точке – это потенциальная энергия электрического поля в этой точке, приходящаяся на единицу помещённого в эту точку заряда: φ = Wp/q [В] Потенциал поля характеризует возможную работу, которую совершает электрическое поле или которая совершается над электрическим полем при перемещении этого заряда в точку с другим потенциалом: Δφ = A/q.

Поскольку работа будет совершаться только при перемещении заряда между точками, обладающими неодинаковыми потенциалами, то физический смысл имеет лишь разность потенциалов, или напряжение между двумя точками электрического поля. Поэтому, когда употребляют термин ″потенциал″, имеют в виду разность потенциалов между данной точкой, потенциал которой измеряют, и бесконечно удалённой точкой пространства, потенциал которой можно считать равным 0. При этом потенциал в данной точке поля, созданного точечным зарядом Q, равен: φ = Q/(4πεεγ) и , если потенциал создается большим числом зарядов, то φ = ∑φ.

Только разность потенциалов можно измерить с помощью вольтметра. Считают, что напряженность электрического поля – отрицательный градиент потенциала.

2. Действие электрического поля на вещества

Действие электрического поля на различные вещества неодинаково и зависит от их внутреннего строения. По этому действию все вещества делят на:
— проводники электрического тока
— полупроводники
— изоляторы, или диэлектрики.

Проводники характеризуются тем, что в них под действием электрического поля образуется электрический ток – направленное движение заряженных частиц. Это происходит благодаря тому, что в проводниках имеются свободные заряды. Существуют проводники 1 рода (металлы, в которых есть свободные электроны) и 2 рода (растворы электролитов, в которых свободными зарядами являются положительно заряженные ионы – катионы и отрицательно заряженные ионы – анионы).

Читайте также:  Электрические одеяла с подогревом

Полупроводники при обычной температуре имеют мало свободных зарядов. Причём когда электроны в полупроводниках становятся свободными, то на их месте образуется дырка – избыток положительного заряда. Поэтому носителями заряда в полупроводниках являются электроны и дырки.

В диэлектриках нет свободных носителей зарядов, поэтому под действием электрического поля в них не возникает электрического тока, но возникает явление, называемое поляризацией диэлектрика – приобретение диэлектриком полярности за счёт разделения в нём положительных и отрицательных зарядов под действием электрического поля. Поляризация существует в 3 вариантах: ориентационная, электронная и ионная.

Указанные различия хорошо описываются зонной теорией твёрдых тел, или квантовой теорией энергетического спектра электронов в кристалле. Согласно теории в кристалле существуют запрещённые и разрешённые энергетические зоны для электронов. Нижние зоны заполнены полностью электронам. Физические свойства кристаллов определяются верхними зонами, содержащими электроны. Если между верхней зоной и следующей разрешённой зоной запрещённая зона узкая (энергетический интервал невелик), то вещество является проводником, а если запрещённая зона велика – то диэлектриком.

3. Электрический ток

Основной характеристикой электрического тока является сила тока – количество заряда, пересекающее поперечное сечение проводника за единицу времени. Iср = Δq/Δt или для мгновенной силы тока : I = dq/dt. Единицей измерения силы тока является ампер (A). 1 ампер – сила тока, когда заряд 1 кулон проходит через поперечное сечение проводника за 1 секунду. Часто используют миллиампер (мА). 1 мА = 0,001 A. Обычно за направление электрического тока в проводнике принимают направление движения положительных зарядов.

Другой величиной, характеризующей электрический ток, является плотность тока – сила тока, приходящаяся на единицу площади проводника. Измеряется в амперах на квадратный метр: J = I/S.

Различают:

— Постоянный ток – электрический ток, параметры которого (сила и направление) не изменяются во времени. Источниками постоянного тока являются генераторы, которые поддерживают постоянную разность потенциалов на концах проводника.

— Переменный ток – электрический ток, параметры которого изменяются во времени по закону синуса или косинуса. Электрический ток, передаваемый в потребительской электросети, представляет собой синусоидальное колебание частотой 50 Гц: I = Imax·cos(ωt + φ).

Основным законом, описывающим постоянный электрический ток, является закон Ома: сила тока в проводнике прямо пропорциональна разности потенциалов между его концами, или электрическому напряжению (U): I = U/R.

Величина R называется электрическим сопротивлением. Сопротивление является свойством проводников препятствовать прохождению через него электрического тока, при этом электрическая энергия превращается в тепловую энергию. Сопротивление возникает из-за столкновения заряженных частиц (носителей тока) с внутренними структурами проводника – атомами и молекулами. Единицей измерения сопротивления является Ом. Обратная величина сопротивлению называется электрической электропроводностью (D).

Для многих веществ сопротивление является постоянной величиной, независимой от силы тока. Сопротивление проводника является функцией его размера, формы, строения и температуры. Величина сопротивления провода: R = ρ(1/S) (5)

, где l – длина проводника, S — площадь поперечного сечения проводника. Константа прямой пропорциональности ρ называется удельным сопротивлением [ом·м] . Она зависит только от свойств вещества и температуры. Обратной величиной удельному сопротивлению является удельная электропроводность (γ) [ом -1 ·м -1 ] .

На основе удельной электропроводности характеризуют свойство веществ проводить электрический ток. Хорошие проводники тока имеют высокую удельную электропроводность. Изоляторы, или диэлектрики, имеют низкую удельную электропроводность. Полупроводники имеют промежуточную удельную электропроводность. Используя удельную электропроводность, как характеристику вещества, можно представить закон Ома в другой форме: J = γE.

Из формулы следует, что плотность тока в проводнике прямо пропорциональна напряженности электрического поля ), создающего этот ток, и удельной электропроводности вещества проводника (γ).

Удельная электропроводность электролитов и биологических тканей

Плотность тока в растворе электролитов определяется электрическим зарядом положительных и отрицательных ионов, их концентрациями и скоростями движения в электрическом поле: J = q+n+v+ + qnv.

Если принять, что концентрация и величина электрического заряда положительных и отрицательных ионов равны, то J = qn(v+ + v)(8)

Скорость v ионов пропорциональна напряженности электрического поля E и зависит от подвижности ионов u, которая, в свою очередь, является функцией размера, степени гидратации ионов, вязкости растворителя:
v = uE (9)
Тогда J = qn(u+ + u)·E (10).

Это выражение является законом Ома для растворов электролитов.

Хотя сопротивление биологических тканей постоянному электрическому току велико, и по удельной электропроводности биологические ткани близки к диэлектрикам, для объяснения различий в электропроводности различных тканей, их рассматривают как проводники 2 рода, носителями заряда в которых служат ионы.

Биологические ткани не различаются существенно по их ионному составу, но отличаются условиями ионного перемещения. Поэтому ткани разнородны с точки зрения их электрических свойств. Мембраны клеток препятствуют перемещению ионов. Их электрическое сопротивление является наибольшим. Кровь, лимфа, цереброспинальная жидкость характеризуются низким сопротивлением электрическому току. Внутренние органы, содержащие много воды (мышцы, печень, почки, и т.п.), также имеют сравнительно низкое сопротивление. Но сопротивление таких тканей, как кожа и кости, очень высокое. Постоянный электрический ток плохо проникает через сухую кожу. Он распространяется в теле человека, главным образом, вдоль кровеносных и лимфатических сосудов и через мышцы.

Причиной высокого сопротивления биологических тканей постоянному электрическому току – наличие статической ёмкости вследствие изоляционных свойств мембран и явления поляризации, происходящие в клетках, в результате которых возникает встречная эдс, препятствующая прохождению через ткань тока. Причём при малых значениях силы тока он не проходит через ткань вследствие влияния этой ЭДС, а при больших – происходит дезинтеграция (разрушение) клеточных структур, в результате чего сопротивление падает, однако дальнейшие исследования не имеют смысла.

Поляризация – разделение положительных и отрицательных зарядов. многие полагают, что явление поляризации связано с наличием полупроницаемых мембран. Под действием электрического поля ионы начинают перемещаться, но не могут проникнуть через мембрану, в результате у внутренней поверхности мембраны возникает разделение зарядов. Внутри клетки образуется поляризационное поле. Как только его напряженность компенсирует внешнее поле перемещение ионов прекращается. Соответственно этому на внешней стороне мембраны концентрируются противоположно заряженные частицы.

Другие, рассматривая клетки как слоистый диэлектрик, рассматривают явления поляризации как результат гетерогенности клеточных элементов по электропроводности, а также поляризацию связывают с дипольными молекулами (ориентация диполей вдоль силовых линий поля).

Постоянный ток используют в медицинской практике, для реализации двух методов – гальванизации и лекарственного электрофореза.

Читайте также:  Хорошее средство от мух

Гальванизация

Гальванизация – метод терапии, основанный на применении постоянного электрического тока. Метод назван в честь итальянского врача и ученого Луиджи Гальвани – основоположника изучения электрических токов, генерируемых биологическими тканями.

Метод гальванизации состоит в пропускании постоянного тока через определенные области тела человека. Величина напряжения должна составлять не более 50-80 Вольт. Под электроды, изготовленные из металла, помещают увлажненные фланелевые прокладки. Величина силы тока может составлять от нескольких миллиампер до 50 миллиампер. Но плотность тока не должна превышать 0,1 миллиампер на квадратный сантиметр. Ток не должен беспокоить пациента.

Неорганические ионы и ионы воды перемещаются под действием электрической поля. Подвижность органических ионов значительно меньше, чем неорганических ионов. Наибольшие изменения при гальванизации происходят в мембранах клеток. Они состоят в осуществлении электрохимических процессов, которые изменяют поляризацию мембраны и влияют на проницаемость мембраны и величину трансмембранного потенциала. Эти процессы стимулируют рецепторы, вызывают различные физиологические реакции и изменения метаболизма. Гальванизация используется по большей части для лечения системных болезней нервной системы.

Лекарственный электрофорез

Гальванизация обычно сопровождается лекарственным электрофорезом. В этом методе постоянный электрический ток используют для введения лекарств в ткани тела с терапевтическими целями. Большое число лекарственных препаратов способны диссоциировать в водных растворах на положительные и отрицательные ионы. Среди таких лекарств: соли, антибиотики, местные анестетики, алкалоиды и много другие. Электрическое поле заставляет их перемещаться: положительные ионы (катионы) к отрицательному электроду (катоду) и наоборот. Под влиянием электрического поля лекарства могут проникать через неповрежденную кожу. Основными путями ионов, проникающих через кожу, являются каналы потовых желез. Наибольшая часть ионов проникает через межклеточное пространство, меньшая — через клетки. Лекарства концентрируются, главным образом, в коже и подкожной ткани и формируют депо. Локальная концентрация лекарств в таком депо может быть сравнительно высокой. Оттуда лекарства медленно поглощаются в кровь, что способствует продлению лечебного эффекта.

Переменный ток. Полное сопротивление

Электрические цепи переменного тока включают такие основные электрические компоненты как резисторы, конденсаторы и индукторы. Их специфические свойства — сопротивление, емкость и индуктивность.

Емкость. Если два проводника (пластины металла) разделены посредине изоляцией, они способны накапливать некоторое количество электрического заряда. Величина, равная отношению суммарного заряда, накопленного на пластинах, к разности потенциалов между пластинами называется емкостью (измеряется в Фарадах (F): C = q/U (13).

Индуктивность. Индуктивность L связана с наличием магнитного поля вокруг провода или катушки, через которые проходит электрический ток. Переменное магнитное поле порождает эдс (электродвижущую силу) самоиндукции, которая препятствует изменению силы тока в проводнике:
ε = -L·dl/dt (14), где ε — электродвижущая сила, dl/dt — мгновенная скорость изменения силы тока, L — индуктивность, которая зависит от геометрии цепи и от магнитных свойств вещества проводника и среды. Индуктивность измеряется в Генри (Г).

Реактанс (или реактивное сопротивление). Ранее упоминалось, что сопротивление является свойством электрической цепи препятствовать прохождению через нее электрического тока и что электрическая энергия при этом превращается в тепловую. Реактанс — мера сопротивления переменному электрическому току. Реактанс связан с емкостью и индуктивностью некоторых частей цепи. Он не превращает электрическую энергию в энергию тепла. Реактанс присутствует дополнительно к сопротивлению, если через проводники протекает переменный ток. Когда в цепи течет постоянный электрический ток, то он подвергается только активному сопротивлению, но не реактансу. Реактанс бывает двух типов: индуктивный и емкостной.

Емкостной реактанс XC является обратной величиной произведения угловой (циклической) частоты тока и емкости этой части цепи: XC = 1/(ω·C)(15).

Индуктивный реактанс XL равен произведению угловой частоты переменного тока на индуктивность проводника: XL = ωL (16).

Доказано, что индуктивный реактанс приводит к тому, что изменения напряжения в электрической цепи опережают изменения силы тока на четверть периода (π/2). Это можно объяснить тем, эдс самоиндукции препятствует нарастанию силы тока в цепи.

Наоборот, емкостной реактанс приводит к тому, что изменения напряжения в электрической цепи отстают от изменения силы тока на четверть цикла (π/2). На рис. 3. проиллюстрировано данное явление.

Поэтому общий реактанс X представляет собой разность индуктивного и емкостного реактансов: X = XL — XC.

Если суммировать активное сопротивление и общий реактанс, который препятствует прохождению переменного тока в электрической цепи, получим величину, которая называется полным сопротивлением Z – импедансом:

Биофизические основы реографии

Реография — метод, который позволяет измерять кровенаполнение конечностей, мозга, сердца и многих других органов.

Когда некоторый объем крови протекает через сосуды любого органа в течение систолы, объем этого органа увеличивается. Такие изменения объема изучались в прошлом с помощью, так называемой, плетизмографии, которая была основана на механических измерениях. Но возможности этого метода были ограничены. Он мог применяться только для изучения кровенаполнения верхних конечностей.

Позже было обнаружено, что при изменении количества крови в сосудах органов, изменяется их электрическое сопротивление. Это изменение определяется формулой Кедрова:

Здесь V — объем органа и ΔV — изменение объема в течение систолы, R – активное сопротивление и — ΔR изменение активного сопротивления органа в течение систолы, k — коэффициент прямой пропорциональности. ΔR имеет отрицательное значение, поскольку электрическое сопротивление крови меньше, чем сопротивление мышц, соединительной ткани, кожа и т.п. Поэтому активное сопротивление органов уменьшается в течение систолы и растет в течение диастолы.

Изменение активного электрического сопротивления вызывает изменение полного сопротивления. По техническим причинам более удобно измерять именно изменения импеданса, чем изменения активного сопротивления постоянному току. В реографии кинетика полного сопротивления тела человека отражает частоту и объем локального кровенаполнения органов.

Для измерения изменения полного сопротивления биологического объекта, через него пропускают переменный ток высокой частоты. Оптимальная частота, применяемая в реографии — 100 – 500кГц. При частотах выше 500 кГц сглаживаются различия в удельной электропроводности между кровью и окружающими тканями. Изменения полного сопротивления являются очень небольшими, их величина составляет: 0,08Ом для голени и предплечья, 0,1Ом для плеча и ступни.

Основная (интегральная) реограмма отражает изменение импеданса исследуемого органа при кровенаполнении. Возрастающая часть кривой возникает вследствие систолы, а нисходящая — вследствие диастолы. Обычно одновременно записывается дифференциальная реограмма. Она является производной первого порядка по времени интегральной реограммы и описывает скорость изменения кровенаполнения исследуемого органа.

Реография применяется для изучения кинетики полного электрического сопротивления различных органов: сердца (реокардиография), мозга (реоэнцефалография), печени (реогепатография), глаза (реоофтальмография) и т.п.

Ссылка на основную публикацию
Adblock detector