Электронный балласт для люминесцентных ламп схема 36w

Электронный балласт для люминесцентных ламп схема 36w

Лампы дневного света (ЛДС) в виде длинной трубки давно применяются как в быту, так и в офисах. Главное их преимущество, по сравнению с лампами накаливания, – большая светоотдача, долговечность и экономия электроэнергии.

В старых светильниках применяли тяжелые дроссели и стартеры, они долго и с миганием зажигали лампы, работали ненадежно, гудели, а лампы мигали. На смену им пришли электронные балласты. Они легче по весу, мгновенно зажигают лампу, не гудят, работают в широком диапазоне питающих напряжений, не мигают, так как работают на больших частотах, и по стоимости приблизились к светильникам с тяжелыми дросселями.

Фото. Внешний вид светильника

Внешний вид такого светильника китайского производства типа DL-3011 для ЛДС мощностью 36 Вт показан на фото. Его номинальное питающее напряжение 220…240 В/50 Гц, но при испытаниях показал работоспособность и в диапазоне напряжений 100…240 B. Сам электронный блок питания (балласт) помещается внутри светильника в пластмассовой коробке. Он смонтирован на монтажной плате размерами 107х27 мм (рис.1).

Рис 1. Электронный ПРА

Принципиальная схема ЭПРА нарисована по монтажной плате и показана на рис.2 Все элементы на ней обозначены так же, как и на монтажной плате.

Рис 2. Принципиальная схема ЭПРА

Вначале вспомним принцип зажигания люминесцентных ламп, в том числе и при применении электронных балластов. Для этого необходимо выполнить два условия: первое – разогреть обе ее нити накала, второе – приложить большое (около 600 В) напряжение. Величина напряжения зажигания прямо пропорциональна длине стеклянной люминесцентной лампы, т.е. для коротких (18 Вт) ламп оно меньше, а для длинных (36…40 Вт) ламп – больше.

Работа электронного балласта

Вначале сетевое напряжение выпрямляется до постоянного напряжения 260…270 В (измерено на работающем преобразователе при напряжении сети

220 В) и сглаживается электролитическим конденсатором С1 (15 мкФ/400 В).

Далее двухтактный полумостовой преобразователь, активными элементами которого являются два биполярных высоковольтных транзистора структуры n-p-n (MJE13005), называемыми ключами (рис.2), преобразует постоянное напряжение 260…270 В в высокочастотное напряжение частотой 38 кГц, что позволяет значительно уменьшить габариты и вес балласта. Нагрузкой и одновременно управляющим элементом преобразователя является трансформатор (обозначен на схеме как TU38Q2) со своими тремя обмотками, из них две – управляющие обмотки (каждая по 4 витка) и одна – рабочая, состоящая из двух витков (рис.2 см. прикрепленные данные). Цепь с рабочей обмоткой создает нагрузку на преобразователь.

Первоначальный запуск преобразователя обеспечивает симметричный динистор, обозначенный в схеме DB3. Он открывается, когда после включения электросети напряжение в точках его подключения превысит порог срабатывания. При открытии динистор подает импульс на базу транзистора, после чего преобразователь запускается.

Транзисторные ключи открываются противофазно от импульсов с управляющих обмоток. Для этого обмотки включены в базы транзисторов противофазно (на рис.2 начало обмоток обозначены точками). Открытие каждого ключа вызывает наводку импульсов в двух противоположных обмотках, в том числе и в рабочей обмотке (2 витка). Переменное напряжение с рабочей обмотки L1 подается на люминесцентную лампу через последовательную цепь, состоящую из обмотки L1, первой нити накала лампы, С5 (4700 пФ/1200 В), второй нити накала лампы, С4 (100 нФ/400 В). Величины индуктивностей и емкостей в этой цепи подобраны так, что в ней возникает резонанс напряжений при неизменной частоте преобразователя.

На конденсаторе С5 (470 пФ/1200 В), включенном в резонансную цепь (к лампе), происходит самое большее падение напряжение (так как у С5 самое большое реактивное сопротивление из всех элементов контура), оно зажигает лампу.

Следовательно, максимальный ток в резонансной цепи разогревает обе ее нити накала, а большое резонансное напряжение на конденсаторе С5 зажигает лампу.

Зажженная лампа хотя и уменьшает свое сопротивление, но, как показали измерения, переменное напряжение на ней (и на конденсаторе С5) составляет около 295 В, а на дросселе L1 – около 325 В. Т.е. резонанс напряжений в цепи продолжается, из-за чего уже зажженная лампа и продолжает гореть. Дроссель L1 своей индуктивностью ограничивает ток в зажженной лампе, так как ее сопротивление после зажигания уменьшается. После зажигания лампы преобразователь продолжает работать в автоматическом режиме, не меняя свою частоту с момента запуска. Весь этот процесс зажигания длится менее 1 с.

При испытаниях светильник сохранял работоспособность в диапазоне питающего напряжения переменного тока от 220 В до 100 B, при этом частота преобразования увеличивалась с 38 кГц до 56 кГц, но яркость свечения лампы при напряжении 100 B заметно уменьшилась.

Следует отметить, что на люминесцентную лампу все время подается переменное напряжение, так как это обеспечивает равномерный износ эмиссионных способностей нитей накаливания и этим увеличивает срок службы лампы. При питании лампы постоянным током срок ее службы уменьшается на 50%.

Детали электронного балласта

Типы радиоэлементов указаны в принципиальной схеме (рис.2 см. прикрепленные данные). В состав устройства входят:

  1. Т1, Т2 – транзисторные ключи MJE13005 китайского производства (аналог КТ8164А), структуры n-p-n, в корпусе TO-220 (400 В/4 A, в импульсе 8 А). Их можно заменить КТ872А (1500 В/8 A, корпус Т26а). Цоколевка MJE13005 показана на рис.2 (см. прикрепленные данные). При установке новых транзисторов всегда определяйте правильность выводов БКЭ, так как в аналогах она может не совпадать.
  2. Трансформатор TU38Q2 с ферритовым кольцом, размер которого 11х6х4,5, его вероятная магнитная проницаемость около 2000. Трансформатор имеет 3 обмотки, две из них (управляющие) содержат по 4 витка и одна (рабочая) – 2 витка.
  3. Диоды D1–D7 типа 1N4007 (1000 В/1 А). D1–D4 – выпрямительный мост, D6, D7 – демпферные диоды, а диод D5 разделяет источники питания.
  4. Цепочка R1C2 обеспечивает задержку пуска преобразователя с целью его «мягкого» пуска и не допущения большого пускового тока.
  5. Симметричный динистор типа DВ3 (Uзс.max=32 B; Uос=5 В; Uнеотп.и.max=5 B) обеспечивает первоначальный запуск преобразователя.
  6. R3, R4 – ограничивающие резисторы в цепи эмиттера транзисторов. При экстремальных условиях сгорают, защищая более дорогие транзисторы.
  7. R5, R6 – гасящие резисторы в цепи базы транзисторов.
  8. D6, С3, R2 – демпферная цепочка, препятствующая выбросам напряжения на ключе в момент его запирания, демпферную функцию выполняет и диод D7, но на втором ключе. Кроме того, С3 уменьшает частоту преобразования.
  9. Дроссель L1 состоит из двух склеенных между собой Ш-образных ферритовых половинок. L1 участвует в резонансе напряжений (совместно с С5 и С4) для обеспечения зажигания лампы и поддержки ее в рабочем состоянии, а также ограничивает ток в светящейся лампе.
  10. С5 (4700 пФ/1200 B), С4 (100 нФ/400 B) – конденсаторы в цепи люминесцентной лампы, участвующие в ее зажигании (через резонанс напряжений), а после зажигания поддерживают ее в рабочем (светящемся) режиме. Максимально допустимое напряжения конденсатора С5=1200 В, такая величина подобрана неслучайно. При зажигании напряжение на С5 может превышать 600…700 В, и конденсатор должен выдержать его.
  11. Конденсаторы 22 нФ/100 В (на схеме производители их не обозначили) предназначены для уменьшения частоты работы преобразователя. Напомним, что она равна 38 кГц при номинальном питающем напряжении.
  12. С1 (15 мкФ/400 В) – единственный оксидный конденсатор в балласте, выполняющий функцию сглаживания выпрямленного напряжения питающей электросети.
  13. F1 – мини-предохранитель в стеклянном корпусе номиналом 1 А.
Читайте также:  Отзывы о септике росток

Ремонт

При ремонте платы под напряжением будьте осторожны, так как ее радиоэлементы находятся под фазным напряжением.

Перегорание (обрыв) накальных спиралей люминесцентной лампы, при этом блок питания остается исправным. Это типичная неисправность. Устраняется она простой заменой стеклянной лампы, которая продается в любом магазине электротоваров и стоит около 1,5 USD. Применять можно лампы мощностью 36 и 40 Вт.

Трещины в пайке монтажной платы

Причины их появления: периодическое нагревание и последующее, после выключения, остывание места пайки, а также низкокачественная пайка платы изготовителем. Нагреваются места пайки от элементов, которые греются, – это транзисторные ключи. Такие трещины могут проявиться после нескольких лет эксплуатации, т.е. после многократного нагревания и остывания места пайки. Устраняется неисправность повторной пайкой трещины. Иногда необходимо предварительно зачистить место пайки.

Повреждение отдельных радиоэлементов

Отдельные радиоэлементы могут повредиться от скачков напряжения в электросети. В первую очередь, это транзисторы MJE13005. Производители не предусмотрели защиты схемы от всплесков напряжений, например, варисторами. Скачки напряжений часто имеют место в сельских электросетях во время сильных ветров и молний, поэтому во время таких атмосферных явлений светильник лучше не включать. Имеющийся в схеме предохранитель (1А) не защитит радиоэлементы от скачков напряжений, а лишь при пробое радиоэлементов.

Очередная прогулка по магазинам завершилась покупкой балласта для ламп дневного освещения. Балласт на 40 ватт, способен питать одну мощную ЛДС или две маломощные по 20 ватт.

Интересно то, что цена такого балласта недорога, всего 2 доллара. Для некоторых, покажется, что все-таки 2$ за балласт дороговато, но после вскрытия, оказалось, что в нем использованы компоненты в разы дороже общей цены балласта. Одна только пара мощных высоковольтных транзисторов 13009 уже стоят более доллара каждый.

Кстати, срок службы ЛДС зависит от способа запуска лампы. Из графиков видно, что холодный старт резко сокращает срок службы лампы.

Особенно в случае применения упрощенных электронных балластов, которые резко выводят ЛДС в рабочий режим. Да и способ питания лампы постоянным током также снижает срок службы. Незначительно — но всё-таки снижает. Примеры — на схемах ниже:

Простая схема электронного балласта (без микросхемы управления) почти мгновенно зажигает лампу. И для долговечности лампы это плохо. За короткое время нить накала не успевает разогреться, а высокое напряжение, приложенное между ее нитями, вырывает из нити накала требуемое количество электронов, необходимое для зажигания лампы, и этим разрушает накал, понижая его эмиссионную способность. Типовая принципиальная схема электронного балласта:

Поэтому рекомендуется выбирать белее серьёзную схему, с задержкой подачи питания (клик для увеличения):

В схеме купленного балласта особенно порадовал сетевой фильтр — чего нет в электронных трансформаторов для галогенных ламп. Фильтр оказался не простой: дроссель, варистор, предохранитель (не резистор как в ЭТ, а самый настоящий предохранитель), емкости перед и после дросселя. Дальше идет выпрямитель и два электролита — это не похоже на китайцев.

После уже идет стандартная, но в разы улучшенная схема двухтактого преобразователя. Тут сразу на глаза бросаются две вещи — теплоотводы транзисторов и применение более мощных резисторов в силовых цепях, обычно китайцам без разницы, где ток в цепи больше или меньше, они используют стандартные резисторы 0,25вт.

После генератора идут два дросселя, именно благодаря им происходит повышение напряжения, тут тоже все очень аккуратно, никаких претензий. Даже в мощных электронных трансформаторах китайские производители редко используют теплоотводы для транзисторов, но здесь как видим они есть, и не только есть, но и очень аккуратны — транзисторы прикручены через дополнительные изоляторы и через шайбы.

С обратной стороны плата тоже сияет аккуратностью монтажа, никаких острых выводов и испорченных дорожек, олово так-же не пожалели, все очень красиво и качественно.

Подключил устройство — оно отлично работает! Я уже начал думать, что сборку делали немцы, под суровым контролем, но тут вспомнил цену и почти поменял свое мнение о китайских производителях — молодцы парни, поработали на славу! Обзор подготовил АКА КАСЬЯН.

Обсудить статью ЭЛЕКТРОННЫЙ БАЛЛАСТ ДЛЯ ЛАМП ЛДС

Электронные балласты, они же ЭПРА (электронный пускорегулирующий аппарат), служат для розжига и поддержания рабочего режима газоразрядных ламп (в данном случае – люминесцентных). Преимущества электронного балласта перед обычным дросселем и стартером очевидны, это и отсутствие мерцаний ламп при запуске и более высокий коэффициент мощности и значительно более низкий коэффициент пульсаций светового потока (для сравнения: у лампы, включенной с обычным дросселем и стартером пульсации светового потока составляют порядка 40÷60%, с дешевым электронным балластом около 15%), а также более низкая стоимость и тд. В наше время, практически каждый люминесцентный светильник, будь то офисный или домашний, оснащен электронным балластом.

По схемотехнике существующие ЭПРА можно поделить на две группы. Первая – это балласты с холодным стартом, т.е. без предварительного подогрева катодов ламп. Представляют собой полумостовой преобразователь с автозапуском на двух мощных высоковольтных транзисторах ZEN13007 и пассивным корректором мощности. Таких балластов подавляющее большинство. Некоторые самые дешевые модели, обычно китайского производства, могут не иметь даже входного помехоподавляющего фильтра и схемы защиты от перегрузок. Вторая группа – балласты с теплым стартом и активным корректором мощности. Построены они на специализированных микросхемах, например на распространённом семействе микросхем от International Rectifier IR2166, IR2168 и др. Отличаются очень низким коэффициентом пульсаций светового потока – 2÷5% и высоким коэффициентом мощности до 0,98. О варианте такого устройства и пойдет речь в этой статье. При его разработке стояла задача разработать универсальный балласт c теплым стартом для люминесцентных ламп Т8 с характеристиками, не уступающими дорогим промышленным образцам и возможностью подключения разного числа ламп различной мощности. В этом его основная отличительная особенность – семь конфигураций (вариантов) подключения ламп: 1х18 (1 люминесцентная лампа типа Т8 мощностью 18Вт), 1х36, 1х58, 2х18, 2х36, 3х18, 4х18. Все промышленные аналоги позволяют не более двух вариантов подключения, например 1х36 и 2х36. Схема устройства на приведена на рис.1


Рис.1. Схема универсального ЭПРА с теплым стартом на ICB1FL02G

Основные характеристики:
Входное переменное напряжение, В………………………………110÷250
Максимальный потребляемый ток (4 лампы по 18Вт), мА………330÷350
Коэффициент мощности (4 лампы по 18Вт), не менее. …………0,98
Коэффициент пульсаций светового потока не более, %. 5
КПД не менее………………………………. 0,9
Частота предварительного прогрева, кГц………………………….55
Частота розжига, кГц………………………………………………..48
Рабочая частота, кГц………………………………………………. 41

Балласт построен на специализированной микросхеме-контроллере электронного балласта люминесцентных ламп – ICB1FL02G, разработанной фирмой Infineon, подробное описание работы микросхемы в [1]. ICB1FL02G по сравнению с IR2166 и IR2168 более функциональна, требует меньшего числа внешних элементов и как показала практика, более стабильна и надежна (это субъективное мнение автора). Работу схемы можно разделить на три этапа: предварительный прогрев катодов лампы, розжиг и рабочий режим. Предварительный прогрев реализован следующим образом. Сразу же после включения, тактовый генератор микросхемы начинает работать на частоте около 125кГц. Через 10мс его частота плавно уменьшится до 65кГц – это частота предварительного прогрева, которая задается резистором R13. Это значение гораздо выше резонансной частоты выходного балластного контура L2С16, поэтому, прикладываемое к катодам ламп напряжение будет недостаточным для их розжига. Начинается предварительный прогрев ламп, длительность которого задается резистором R14 и может быть выбрана от 0 до 2с (в данном случае выбрана 1с.). В течение этого времени частота остается неизменной. За время предварительного прогрева катоды ламп достаточно прогреются высокочастотным током, а газ в лампах начнет частично ионизироваться. В итоге последующий розжиг пройдет в менее стрессовом режиме для нитей ламп и с меньшими бросками тока через силовые ключи VT2, VT3. Функция предварительного прогрева значительно, иногда в несколько раз, увеличивает срок службы люминесцентной лампы. По истечении времени предварительного прогрева, в следующие 40 мс, частота тактового генератора микросхемы снова начнет понижаться. По мере ее приближения к резонансной частоте контура L2С16, напряжение, прикладываемое с обкладок конденсатора С16 к катодам ламп, начнет резко возрастать и при достижении 600÷800В произойдет розжиг. Если в этот момент времени напряжение на токовом резисторе R23 достигнет порога 0,8В, а это может произойти, например, при попытке включить балласт без нагрузки или при неисправности одной из ламп, контроллер микросхемы прекратит дальнейшее снижение частоты преобразователя и вновь начнет повышать ее, что в свою очередь вызовет уменьшение напряжения на С16. Это делается с целью избежать чрезмерного скачка тока и напряжения на выходе преобразователя. При уменьшении падения напряжения ниже 0,8В на R23, частота вновь начнет понижаться. Этот процесс может повториться несколько раз, пока не будет получен сигнал об успешном розжиге. Сигналом об успешном розжиге служит появление синусоидального тока амплитудой не более 2,5мА на выв. 13 D1 и напряжения трапецеидальной формы размахом не более 3,2В на выв.12 D1. Максимальное время розжига может составлять 235мс. В случае неудачного розжига ламп, микросхема перейдет в аварийный режим и прекратит коммутацию выходных ключей VT2 и VT3. При успешном розжиге, D1 перейдет в рабочий режим, частота тактового генератора опустится до рабочего значения, которое задается резистором R12. Все три этапа работы балласта: прогрев, розжиг и рабочий режим иллюстрирует осциллограмма на рис.2 (осциллограф подключен к контактам 3, 9 разъема XT2). На рис.3 осциллограмма напряжения в рабочем установившемся режиме с подключенными 4-мя 18Вт лампами.


Рис.2. Прогрев, розжиг и рабочий режим


Рис.3. Рабочий режим

В рабочем режиме активируются дополнительные защитные функции: EOL (End Of Life) – окончание срока службы лампы, защита от работы в емкостном режиме, защита от выпрямительного эффекта ламп. В случае резкого увеличения тока через лампу, что может произойти к окончанию срока ее службы, увеличится до 215мкА ток в цепи: плюс источника питания, R25…R29, нить лампы, R20…R17, внутренний датчик тока D1. Это вызовет срабатывание защиты EOL и балласт отключится. Если положительный и отрицательный полупериоды тока, текущего по этой цепи не равны по амплитуде, это означает, что лампа работает в выпрямительном режиме. То есть ток через лампу в одну сторону больше, чем в другую. Такой эффект вызывается преждевременным износом одного из катодов лампы. В этом случае балласт также переходит в аварийный режим. Если во время работы балласта нарушится контакт в цепи ламп, например, неисправный ламподержатель или перегорит одна из нитей, сопротивление цепи резко возрастет и выходной каскад перейдет в емкостной режим работы, что в свою очередь может вызвать резонанс. В этом случае напряжение на выв.12 D1 превысит уровень 1,6В и вызовет срабатывание защиты, балласт отключится. Также выводы 13 (LVS – Lamp Voltage Sense) и 12 (Res–restart) D1 служат для контроля подключения ламп в течение всего времени работы балласта. Если во время работы балласта вывернуть одну из ламп – балласт отключится.

Активный корректор мощности собран на элементах T1,VT1,VD2,C3. Его назначение – максимально приблизить форму потребляемого тока к форме напряжения, тем самым свести к минимуму реактивную мощность. Подробно принцип его работы описан в [1] и[2]. Особенность данного корректора – возможность работы как в режиме критической проводимости (Critical Conduction Mode – CCM), так и в режиме прерывистой проводимости (Discontinuous Conduction Mode – DCM). Делитель R8…R11С5 служит для контроля мгновенного значения напряжения питания и определения времени закрытия VT1. Вторичная обмотка Т1, подключенная через ограничивающий резистор R6 к выв.7 D1, необходима для определения момента, когда ток через Т1 достигнет нулевого значения. Как только это произойдет, на затвор VT1 будет подан открывающий импульс. Обе обмотки Т1 должны быть обязательно синфазны.

Питание микросхемы в первый момент времени осуществляется от цепочки R1…R3. В дальнейшем – от выходного каскада через стабилизатор С9С10R24VD4VD5C8.

Для подключения к балласту 4-х ламп, производитель микросхемы рекомендует использовать два выходных балластных контура, включенных параллельно, в каждом контуре по две, последовательно соединенные лампы [1]. Но тогда возникает следующая проблема. При даже незначительном разбросе параметров выходного LC-контура пары ламп могут разжигаться неодновременно, что не очень приятно для восприятия. С другой стороны, четыре последовательно соединенные лампы разжечь довольно проблематично, так как они не успевают достаточно прогреться во время предварительного прогрева и для розжига потребуется гораздо большая энергия. К тому же нельзя забывать и о потерях на соединительных проводах. Решением стало оставить один выходной контур, но добавить маломощный вспомогательный понижающий трансформатор Т2. Он компенсирует потери в местах соединения ламп, улучшает прогрев ламп и облегчает их розжиг. Экспериментально было установлено, что мощность Т2 должна составлять 8÷10% от общей мощности ламп и коэффициент трансформации должен быть 20÷30. При подключении к балласту ламп 1х18, 2х18, 1х36, трансформатор Т2 и разделительные конденсаторы С17, С20 и С21 необходимо удалить, чтобы избежать приложения к лампам излишней мощности.

В документации [1] приводится расчет всех основных элементов балласта, за исключением расчета выходного контура L2C16. Элементы L2 и С16 рассчитывались следующим образом. Максимальная мощность ламп (4х18 или 2х36) составляет P=72Вт, рабочая частота выбрана f = 41кГц, частота розжига fign= 48кГц [1], с использованием теплого старта оптимальное напряжение розжига Uign700В. Из соотношения энергии получим:

Из имеющихся был выбран конденсатор 6,8 нФ. Теперь определяем индуктивность L2:

С другой стороны индуктивность балластного дросселя должна соответствовать условию:

Uin напряжение питания; Ulamp – рабочее напряжение на лампах, т.к. рабочее напряжение 18Вт лампы составляет около 56В, то Ulamp=4*56B=224B; ton – время открытого ключа, при f = 41кГц, ton 11,5мкс (согласно [1]); Ilamp 0,33A– рабочий ток ламп. Отсюда:

Определяем максимальный ток дросселя L2, он будет равен току конденсатора С16 в момент резонанса:

Выбираем подходящий по габаритной мощности сердечник, например EV25/13/13.

Оценим требуемый зазор g (mm):

Примем индукцию В = 0,22Тл. Имеем:

Рассчитаем число витков N дросселя L2:

где: AL – индуктивность на виток (сердечник с зазором), (Г); AL – индуктивность на виток (сердечник без зазора, справоч.), ); le – длина средней линии сердечника, (мм); µe – начальная магнитная проницаемость сердечника, справоч. Для сердечника EV25/13/13, материал N87: AL = 2400 нГ, le = 59 мм; µe = 1520. Отсюда:

Проверим максимальную индукцию:

Дроссель намотан проводом 4х0,2мм. При возможности обмотку желательно разделить на секции.

Печатная плата балласта односторонняя, все выводные элементы на верхней стороне, smd – на нижней. Чертеж печатной платы на рис.4, рис.5. 3D модель печатной платы на рис.6. Фото готового устройства на рис.7, рис.8. Конденсатор С16 – металлопленочный, на напряжение 1600В. С17, С19, С10 – металлопленочные или дисковые керамические на 1000В. С20, С21 – 100В. Диоды VD2, VD3 – быстродействующие на обратное напряжение не менее 600В. VT1…VT3 можно заменить на SPP03N60C3 или аналогичные. Трансформатор Т1 намотан на сердечнике Е25/13/7, материал N27, немагнитный зазор 1.6мм. Первичная обмотка содержит 184 витка проводом 4х0.2мм, вторичная – 14 витков проводом 0.3мм. Т2 намотан на сердечнике Е16/8/5, материал N27, без зазора. Обмотка 1-2 содержит 208 витков; обмотки 11-14, 6-7, 10-13 по 24 витка; обмотки 4-5, 8-9 по 12 витков. Диаметр провода всех обмоток Т2 – 0.18мм. Частотозадающие резисторы R12…R14 желательно выбрать с допуском 0.5÷1%. Помехоподавляющий дроссель L1, любой стандартный с индуктивностью 20мГн и рассчитанный на ток не менее 0,5А. Правильно собранное устройство обычно начинает работать сразу и никаких настроек не требуется.


Рис.4. Печатная плата, верхняя сторона.


Рис.5. Печатная плата, нижняя сторона (отзеркалено).


Рис.6. 3D модель печатной платы (Altium Designer).


Рис.7. Внешний вид готового балласта.


Рис.8. Внешний вид готового балласта.

Ссылка на основную публикацию
Adblock detector