Холодная энергия своими руками

Холодная энергия своими руками

Много лет ученые ищут идеальный альтернативный источник электроэнергии, который позволил бы добывать ток из возобновляемых ресурсов. О том, как получить статическое электричество из воздуха, задумывался еще Тесла в 19 веке, и сейчас ученые пришли к выводу, что да, это вполне реально.

Виды добычи

Альтернативное электричество может добываться из воздуха двумя способами:

  1. Ветрогенераторами;
  2. За счет полей, пронизывающих атмосферу.

Как известно, электрический потенциал имеет свойство накапливаться в течение определенного времени. Сейчас атмосфера изнизана различными волнами, производящимися электрическими установками, приборами, естественным полем Земли. Это позволяет говорить о том, что электричество из атмосферного воздуха можно добыть своими руками, даже не имея никаких специальных приспособлений и схем, но про особенности токопроизводства по этому варианты мы расскажем ниже.

Фото — грозовая батарея

Ветрогенераторы – это давно известные источники альтернативной энергии. Они работаю за счет преобразования силы ветра в ток. Ветряной генератор – это устройство, способное работать продолжительное время и накапливать энергию ветра. Данный вариант широко используется в различных странах: Нидерландах, России, США. Но, одной ветряной установкой можно обеспечить ограниченное количество электрических приборов, поэтому для питания городов или заводов устанавливаются целые поля ветроустановок. В использовании этого способа есть как достоинства, так и недостатки. В частности, ветер – это непостоянная величина, поэтому нельзя предугадать уровень напряжения и накопления электричества. При этом, это возобновляемый источник, работа которого совершенно не вредит окружающей среде.

Фото — ветряки

Видео: создание электричества из воздуха

Как добыть энергию из воздуха

Простейшая принципиальная схема не включает в себя никаких дополнительных накопительных устройств и преобразователей. По сути, требуется только металлическая антенна и земля. Между этими проводниками устанавливается электрический потенциал. Он со временем накапливается, поэтому это непостоянная величина и рассчитать его силу практически невозможно. Такое, вырабатывающее ток, устройство работает по принципу молнии – через определенный промежуток времени происходит разряд тока (когда потенциал достиг своего максимума). Таким образом, можно извлечь из земли и воздуха достаточно большое количество полезной электроэнергии, которой будет достаточно для работы электрической установки. Её конструкция подробно описывается в труде: «Секреты свободной энергии холодного электричества».

Фото — схема

Схема имеет свои достоинства:

  1. Простота в реализации. Опыт можно с легкостью повторить в домашних условиях;
  2. Доступность. Не нужно никаких приспособлений, самая обычная пластина из токопроводящего металла подойдет для реализации проекта.

Недостатки:

  1. Реализация схемы очень опасна. Нельзя рассчитать даже примерное количество ампер, не говоря уже про силу токового импульса;
  2. При работе образовывается своеобразный открытый контур заземления, к которому притягиваются молнии. Это является одной из самых главных причин, почему проект не «пошел в массы» — он опасен для жизни и производства. Удар молнии подчас достигает 2000 Вольт.

С этой точки зрения, свободное электричество, добытое при помощи ветрогенераторов более безопасно. Но тем ни менее, сейчас можно даже купить такой прибор (к примеру, ионизатор-люстра Чижевского).

Фото — люстра Чижевского

Но есть еще один вариант рабочей схемы – это генератор TPU электричества из воздуха от Стивена Марка. Это устройство позволяет получить определенное количество электроэнергии для питания различных потребителей, причем, делает он это без какой-либо подпитки из вне. Технология запатентована и многие ученые уже повторили опыт Стивена Марка, но из-за некоторых особенностей схемы она еще не пущена в обиход.

Принцип работы прост: в кольце генератора создается резонанс токов и магнитные вихри, они способствуют появлению в металлических отводах токовых ударов. Рассмотрим наглядно, как сделать тороидальный генератор, чтобы добыть электричество из воздуха:

  1. Вам понадобится основание (это может быть кусок фанеры в форме кольца, отрезок резины, полиуретана и т. д.), две коллекторные катушки (внутренняя и внешняя) и катушки управления. Индивидуальный чертеж может иметь другие размеры, но в основании берется кольцо с наружным диаметром 230 мм, внутренним 180 мм, шириной 25 мм и толщиной 5 мм. Вырежьте из основания кольцо этого размера; Фото — основание
  2. Теперь нужно намотать внутреннюю коллекторную катушку. Намотка трехвитковая, производится многожильным проводом из меди. Специалистами заявляется, что и одного витка намотки будет достаточно для запитки лампочки и проведения эксперимента;
  3. Управляющих катушек – четыре штуки, каждая из них должна находиться под прямым углом, в противном случае, будут создаваться помехи магнитному полю. Намотка плоская, зазор между отдельными витками (катушками) примерно 15 мм, но это зависит от особенностей выбранного материала; Фото — четыре катушки
  4. Для намотки управляющих катушек могут использоваться медные одножильные провода, на описываемый размер рекомендуется делать 21 виток;
  5. Для установки последней катушки используется медный провод с изоляцией. Он наматывается по всей площади основания. Фото — конечная обмотка

На этом конструирование можно считать завершенным. Теперь нужно соединить выводы. Предварительно нужно между выводами обратной земли и земли установить конденсатор на 10 микрофарад. Для запитки схемы используются скоростные транзисторы и мультивибраторы. Они подбираются опытным путем, т. к. их характеристики зависят от размера основания, видов провода и некоторых других особенностей конструкции. Для управления схемой можно использовать стандартная кнопка питания (ВКЛ – ВЫКЛ). Для более подробной информации рекомендуем просмотреть видео по генератору Стивена Марка в Xvid или TVrip-качестве.

Не менее нашумевшим открытием стал генератор Капанадзе. Этот бестопливный источник энергии был презентован в Грузии, сейчас он тестируется. Генератор позволяет добывать электричество из воздуха без использования сторонних ресурсов.

Фото — предположительная схема генератора Капанадзе

В основе его работы лежит катушка Теслы, которая расположена в специальном корпусе, накапливающем электроэнергию. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, реально подтверждающих существование этого изобретения. Схема не разглашается.

Холодная энергия катушки

Человек, который использует на форуме логин "UFOpolitics", готов делиться своими знаниями и опытом на различных форумах, с производством и использованием холодного электричества в твердотельных схемах: его идеи, выложенные на форуме являются необычными, и это очень важно. Его основное утверждение, что если на катушку подавать импульсы, используя такую схему:

Читайте также:  В какие часы нельзя сверлить

затем транзистор отключить быстро, то наблюдается приток холодного электричества в катушку из окружающей среды.
Этот приток энергии может быть собран и направлен в нагрузку с помощью двух высокоскоростных диодов, которые могут выдерживать значительные токи.
Приток энергии происходит, когда транзистор выключен, и поэтому желательно, чтобы транзистор был выключен в течение большей части времени, другими словами, низкая нагрузка в процентах для транзистора.
Там должна быть значительной нагрузка на выработку холодную электроэнергии. Если нет, то холодная электроэнергия будет поступать обратно в горячие цепи, и это может привести к повреждению транзисторов.
Том Берден утверждает, что резисторы повышают холодное электричество, и не препятствует его потоку, поэтому в качестве нагрузки должна быть использована катушка, двигатель постоянного тока с щетками или люминесцентные лампы.
Было отмечено, что поступающая энергия имеет тенденцию течь внутрь, к центру катушки, так что дополнительный метод сбора этой дополнительной энергии состоит в том, чтобы разместить вторую катушку внутри основной катушки, и намотать в одном направлении, как, например, это :

Это дает два отдельных, независимых выхода холодной электроэнергии. Диоды не нужны для внутренней "вторичной" катушки. Эта внутренняя приемная катушка не зависит от числа витков в катушке горячей пульсирующей электроэнергии. Вместо этого приемная катушка собирает поступающее холодное электричество в период, когда пульсирующая катушка выключена. Пульсирующая катушка может быть намотана непосредственно на дополнительную приёмную катушку, или же дополнительная катушка может быть намотана отдельно и помещена в основную катушку.

Очень удивительно, но рекомендуется, чтобы после мощных высокоскоростных диодов должны быть установлены маломощные кремниевые эпитаксиальные плоские высокоскоростные диоды (75V 0.45A) 1N4148 , а это, говорят, для лучшей очистки холодной электроэнергии. Важно, что холодная электроэнергия вначале должна пройти через мощные кремниевые диоды, и потом через диоды 1N4148, поэтому порядок соединения диодов очень важен, и должен быть таким, как показано здесь:

Альтернативными диодами для NTE576 (6А, 35 нс, 400В) являются NTE577 (5А, 70ns, 1000В) и HFA16PB (16A, 19nS, 600В). Основным требованием является высокая скорость работы, номинальное напряжение не менее 400 В и ток не менее 5 ампер.
Существует еще одна вещь, чтобы сделать в схеме, когда требуется выход постоянного тока, и здесь необходимо применить фильтрацию на выходе.
Во-первых, когда энергия пройдёт через силовые диоды NTE576 (или эквивалент), она сталкивается с высокочастотным (малой мощности) высокого качества пленочным конденсатором, размещенным на выходе для того, чтобы откачивать любые высокочастотные пульсации напряжения, прежде чем она передается через небольшие диоды 1N4148, и после сглаживании и конвертации, в электролитический конденсатор.
Конвертация холодного электричества в электролитическом конденсаторе, превращает его в обычную горячую электроэнергию.

Хотя эта схема выглядит несложной, и кажется, что вы просто включите и она будет работать. Однако это не так, так как есть существенная процедура запуска, где сигнал, подаваемый на транзистор начинается с частотой всего несколько герц в секунду, и скважностью 50%, и что вход корректируется, и затем медленно и осторожно частота повышается, контролируя при этом напряжение и ток в схеме. (Этот процесс можно назвать "Тренировкой", и его нужно автоматизировать, подобрав алгоритм процесса — примечание редактора). Это очень мощная система, с возможностью получения высокой выходной мощности.

Это очень важно, что схема не работает без подходящей нагрузки для выработки холодной электроэнергии. Подходящей нагрузкой являются лампы дневного света на 230-вольт.
Следует понимать, что просто использовать выключатель питания не достаточно, чтобы получить приток холодного электричества.
Вместо этого, необходим тщательный последовательный пуск для достижения прогресса, и флюоресцентный свет особенно полезен для этого, хотя неоновые лампы также является популярным выбором временной нагрузки, так как эти устройства позволяют визуально оценивать ток в нагрузке.

До включения, вход генератора установлен на 50% рабочий цикл и минимальную частоту. Частота поднимается очень медленно, в результате чего лампа начинает мигать.
Поскольку частота повышается, ток от батареи должен контролироваться непрерывно, так как это ток, протекающий через транзистор, и ток сдерживается за счет снижения рабочего цикла постепенно.
В случае успеха, свет первоначально будет фиолетовым или зеленым, до достижения непрерывного яркого белого цвета. Видео показывает излучаемый свет, и тот факт, что это не опасно для жизни, можно посмотреть здесь.
Движущей силой является серия мощных магнитных импульсов, и осуществление физической цепи для достижения этого требует тщательной сборки.

Аккумулятор для питания схемы 36 вольтовый. Катушка намотана на отрезке трубы 2-дюймового (50 мм) диаметра без сердечника. Сопротивление катушки постоянному току около 1,4 или 1,5 Ом.
Это, в свою очередь, требует существенного тока от транзистора. Здесь используются шесть мощных выходных транзисторов, соединённых параллельно и закреплённых болтами к общему радиатору.
Здесь можно рассмотреть как намотана катушка. Цель состоит в том, чтобы иметь катушку сопротивлением около 1,5 Ом, и которая имеет максимальный магнитный эффект для протекающего тока.
Медная проволока стала очень дорогой, и поэтому было бы очень дорого для намотки катушки использовать толстую проволоку огромной длины, не говоря уже о больших размерах и большого веса. Подробная информация о медной проволоке, производимой в Европе показана в таблице.

Мы видим из этого, что 500 грамм катушка 14 SWG провод имеет полное сопротивление лишь 0,09 Ом и, поэтому надо было бы принять шестнадцать барабанов (весом 8 килограммов и стоимостью много денег), чтобы намотать катушку с помощью этого провода, которая пропускает холодный ток в 9,3 ампера.
В отличие от этого, одна катушка из 28 SWG может обеспечить 52 отдельных обмоток, которые при подключении параллельно, могут пропустить 15 ампер, а также стоимость и вес намного меньше. Было бы утомительно, но не невозможно, намотать 52 катушки.
Магнитное поле, создаваемое одной жилой, как правило, меньше, чем магнитное поле, создаваемое двумя жилами с тем же током. Таким образом, если выбрать провод 22 SWG, то мы могли бы отмерить четыре провода длиной 33,5 метра, и соединив их параллельно, получим катушку с сопротивлением постоянному току 1,45 Ом.
Сл едует иметь в виду, что максимальный ток, который может пропустить провод составляет 4,8 ампер, при сопротивлении 1,45 Ом.

Читайте также:  Синие стены светлый пол

Если полное напряжение аккумуляторной батареи подается непрерывно на катушку, то она перегорит. Различные участники форума построили и испытали различные схемы для питания переменной частотой, и переменной скважности управляющего сигнала на выходе транзистора.
Тем не менее, "UFOpolitics" рекомендует простой таймер 555.
Если вы не знакомы с электронными схемами, то читайте главу 12, которая объясняет их довольно подробно, в том числе 555.
Дело в том, подчеркнул "UFOpolitics, что выход из контакта 3 в таймере 555 проходит сначала через резистор 100 Ом, а затем, каждый транзистор получает отдельный канал через две пары резисторов делителя напряжения.
47K резистор соединён с землёй для того, чтобы транзистор выключался должным образом. Эти резисторы не должны быть меньше, чем 47K.

Толстыми линиями на этом рисунке показывают толстые провода, которые могут нести большие токи без существенного нагрева.
Рекомендуется также, что, хотя транзистор имеет внутренний диод, дополнительные внешние высокоскоростные диоды (NTE576 или аналогичный), они подключаются к каждому транзистору для того, чтобы повысить скорость переключения:

Реклама открывается в следующей вкладке
Оплаченная Реклама:
— Perfect World — БОТ — новый рабочий..
— Международный сайт знакомств..
— Леон — ставки на спорт
— 33 jokes

FET имеет емкость затвора около 1 нФ. Чем быстрее скорость зарядки / разрядки, тем быстрее FET будет переключаться (и не перегреваться).
Что определяет скорость заряда / разряда — емкость затвора, длина провода от возбудителя до затвора = индуктивность (где один метр провода составляет 0.05мH).
Кроме того, различная длина соединенитедьных проводов до затвора будет создавать различные задержки переключения и различные индуктивности могут инициировать высокочастотные колебания с повторяющимися ON / OFF / ON / OFF переключениями.
В результате может быть сожжён FETS и прекратится получение холодного электричества. Еще один момент, подчёркнутый UFOpolitics является то, что физическое расположение должно иметь соединительные провода или дорожки настолько короткими, насколько это возможно, и он предлагает следующее размещение:

Есть две вещи, которые надо отметить. Во-первых, резистор 100 Ом ближайший от контакта 3 таймера 555 устанавливается по центру вокруг шести FET транзисторов, установ леных на алюминиевых радиаторах, и это осуществляется проводами низкого сопротивления, для питания затвора каждого транзистора.
Во-вторых, радиатор сам также используется для обеспечения низкого сопротивления электрического соединения с катушкой, которая соединена с полевыми транзисторами.

Подключение к радиаторам осуществляется с помощью болтов и гаек. Каждый транзистор электрически соединен с радиатором через его контакты.
Транзисторы, используемые в прототипе, и рекомендованные для репликации является NTE2397. Это не очень распространенный транзистор в Европе, в то время как популярный IRF740 также может быть использован, все основные характеристики транзистора NTE2397 такие же.
"UFOpolitics" предлагает 2SK2837 (500V, 20A, 80A импульсный), или IRFP460 (500В, 0,27 Ом, 20A и 80A импульсный)
В качестве таймера 555 имеет максимальное напряжение питания 15 вольт, LM317N-стабилизатор напряжения чип используется для создания 12-вольтового питания от 36-вольтовой батареи ( может быть использован аккумулятор 24 V):

Схема LM317N должна быть прикреплена к хорошему теплоотводу:

Существуют различные схемы импульсов, которые были успешно использованы с этой системой. "UFOpolitics" считает NE555 чип, самым простым, поэтому, возможно, мое предложение для этой схемы может быть подходящим выбором:

Это дает точное управление частотой и независимой регулировкой скважности, и для этого нужно только три очень дешевых компонента. Если имеется дорогой переменный многооборотный резистор, то переменный резистор "тонкой настройки" 4.7K может быть опущен.
На диаграмме означает «Линейный», который означает, что сопротивление изменяется непрерывно с постоянной скоростью, когда вал переменного резистора поворачивается.
В «UFOpolitics" схемах, важно, чтобы включить при минимальном значении частоты и установить скважность 50%. В противном случае это причинит ущерб некоторым компонентам схемы.

Есть способы, чтобы повысить производительность по сравнению с тем, что уже было описано. Один из способов, это вставить нержавеющий стальной сердечник внутрь катушки. Нержавеющая сталь должна быть немагнитная, но на практике это не всегда так.
Однако, в идеале, это стальной сердечник может быть улучшен путем изменения его кристаллической структуры при нагревании, а затем закаливать, погружая его в холодную воду.
Еще одним усовершенствованием является изоляция катушки с помощью второго транзистора.
Если транзистор "выключен" на каждом конце катушки, это конечно блокирует поток горячего электричества, но если Том Берден прав, сопротивление транзистора в выключенном состоянии будет на самом деле увеличивать поток холодного электричества. Устройство выглядит так:

Хотя это выглядит как очень простая схема, но реализовать это не просто. Но, напряжение источника верхнего транзистора не зафиксировано, и быстро меняется в связи с изменением тока в катушке, и это не помогает, когда требуется надежное переключение верхнего транзистора.
Может быть использован P-канальный транзистор, и он будет подключён к источнику напряжению плюс 36V батареи.
Это поможет переключение огромной, но все еще будут вопросов о синхронизации включения и выключения двух транзисторов в одно и то же время.

Другие схемы были предложены для выполнения этого типа переключения, но "UFOpolitics" рекомендует делать как можно более проще, поэтому, использует только один транзистор, и это является наилучшим вариантом.
Скорость переключения элементов имеет важное значение. Каждый дополнительный FET, вкдючённый параллельно, замедляет их переключение.
Тем не менее, следует понимать, что есть большая опасность перегорания FET при использовании только одного транзистора.
Рекомендуемые диаметр и длина катушки — два дюйма (50 мм). Диаметр намотки, вероятно, будет примерно три дюйма (75 мм), таким образом диаметр фланца будет 4-дюйма (100 мм), что является реальным:

Читайте также:  Потолки второй свет фото

Рекомендуется материал из стекловолокна, который имеет высокую жаропрочность, и легко обработывается, личным выбором "UFOpolitics" является полиэфирная смола с метил этиловым (МЭК) отвердителем. Независимо от выбранного материала катушки, он должен быть немагнитным. При подключении в цепи, начало обмотки катушки идет к плюсу. Вот еще одна катушка намотана на акриловой трубке:

Следует иметь в виду, что холодная электроэнергия обеспечивает почти неограниченную мощность, и использование которой не понятны многим людям.
"UFOpolitics" предполагает, что схема получения горячего электричества первоначально должна быть проверена, используя резистивную нагрузку.
Если проверка даёт положительный результат, то тест продолжается с меньшим значением резистора, соединённого последовательно с катушкой, и если эта проверка удовлетворительна, то проводится осторожное тестирование с катушкой на номинальной нагрузке.

Холодное электричество может быстро заряжать аккумуляторы, и после серии циклов зарядки и разрядки, батареи становятся «кондиционером» для холодного электричества, и опыт персонала корпорации Electrodyne показывает, что большая батарея кондиционера, которая полностью разряжена, может быть заряжена за одну минуту.
Это было первое использование холодного электричества для низкосортных батарей, и значительное улучшение можно ожидать после многих дополнительных циклов заряда / разряда. Это полностью устраняет факторы, которые делают батарей непригодны для бытовой электросети.

Если весь банк Аккумулятор можно перезаряжать в считанные минуты, то это открывает путь для серьезной бытовой электросети с использованием батарей.
Холодным электричеством можно также запустить очень мощные двигатели. Член Форума "Netica обнаружил, что если подключить конденсатор к клеммам двигателя, то он работает лучше, что дает впечатляющие результаты.
Его видео этого здесь и мотор, работающий с катушкой без сердечника. Его установка выглядит следующим образом:

Можно погрузить схему холодной электроэнергии в воду, не причинив никакого вреда:

Видео этого находится здесь, демонстрирующее использование очень мощных ламп. Общехозяйственные демонстрации здесь.

Что такое атмосферное электричество

Первым всерьез занялся проблемой гениальный Никола Тесла. Источником появления свободной электрической энергии Тесла считал энергию Солнца. Созданный им прибор получал электроэнергию из воздуха и земли. Тесла планировал разработку способа передачи полученной энергии на большие расстояния. Патент на изобретение описывал предложенный прибор, как использующий энергию излучения.

Устройство Теслы было революционным для своего времени, но объем получаемой им электроэнергии был небольшим, и рассматривать атмосферное электричество как альтернативный источник энергии, было неверно. Совсем недавно изобретатель Стивен Марк запатентовал прибор, производящий электричество в больших объемах. Его тороидальный генератор может подавать электричество для ламп накаливания и более сложных бытовых приборов. Он работает длительное время, не требуя внешней подпитки. Работа этого прибора основана на резонансных частотах, магнитных вихрях и токовых ударах в металле.


На фото рабочий образец тороидального генератора Стивена Марка

Как получить электричество из воздуха в домашних условиях

Опыты Николы Тесла показали, что получать электричество из воздуха своими руками можно без особого труда. В наше время, когда атмосфера пронизана различными энергетическими полями, эта задача упростилась. Все, что производит излучения (теле- и радиовышки, ЛЭП и т. п.) создает энергетические поля.

Принцип получения электричества из воздуха очень прост: над землей поднимается пластина из металла, которая играет роль антенны. Между землей и пластиной возникает статическое электричество, которое, со временем накапливается. Через определенные временные интервалы происходят электрические разряды. Таким образом генерируется, а затем используется атмосферное электричество.


Схема получения атмосферного электричества своими руками

Такая схема достаточно проста ‑ для генерации потребуется только металлическая антенна и земля. Потенциал, который устанавливается между проводниками, со временем накапливается, хотя рассчитать его силу невозможно. При достижении определенного максимального значения потенциала происходит разряд тока, подобный молнии.

Достоинства

  • Простота. Принцип легко можно апробировать дома;
  • Доступность. Не нужны никакие приборы и сложные приспособления – достаточно токопроводящей пластинки.

Недостатки

  • Невозможность просчитать силу тока, что может быть опасно;
  • К образованному при работе открытому контуру заземления притягиваются молнии. Удар молнии может достигать напряжения 2000 вольт, а это очень опасно. Именно поэтому способ не получил широкого распространения.

Где уже используют атмосферное электричество

Тем не менее, есть примеры использования приборов, работающих по описанному принципу — ионизатор люстра Чижевского уже не первое десятилетие продается и успешно работает.

Еще одной рабочей схемой получения электроэнергии из воздуха является генератор TPU Стивена Марка. Устройство позволяет получить электроэнергию без внешней подпитки. Многими учеными эта схема апробирована, но широкого применения пока не нашла из-за своих особенностей. Принцип действия этой схемы в создании резонанса токов и магнитных вихрей, которые способствуют возникновению токовых ударов.

В настоящее время в Грузии тестируется генератор Капанадзе. Этот источник энергии также работает без внешней подпитки и добывает электричество из воздуха без дополнительных ресурсов.


На фото готовый к работе генератор Капанадзе

Выводы

Новые способы получения дешевой энергии у многих ученых вызывают опасения из-за вмешательства в процессы атмосферы и ионосферы. Их влияние на возникновение и течение жизни на Земле изучено слабо, поэтому воздействие может пагубно отразиться на состоянии планеты.

Но лично я считаю, что технология атмосферного элекричества тормозится умышленно. Более того, существует факт масштабного использования электричества из воздуха до 1917 года. На видео ниже вы сами можете убедиться в существовании электроэнергии даже в 17 веке.

Ссылка на основную публикацию
Adblock detector